chứng tỏ rằng:
21 mũ 20 trừ 11 mũ 10 chia hết cho 2 và 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình Cần gấp quá ! ai trả lời mình tâu người đó làm sư tổ
tận cùng là 6 thì mũ mấy cũng là sáu nên trừ 1 tận cùng là 5 nên cia hết cho 5
a) Ta có: 6x6=36=>hai số có tận cùng là 6 nhân với nhau được tích tận cùng là 6
Mà 6 mũ 100=36 mũ 50=..........
=> 6 mũ 100 có tận cùng =6
=> 6 mũ 100-1 có tận cùng =5=>chia hết cho 5
85 + 211 = (23)5 + 211 = 215 + 211
= 211.24 + 211.1 = 211.(16 + 1) = 211 . 17 (chia hết cho 17)
692 - 69.5 = 69.69 - 69.5
= 69.(69 - 5) = 69.64 = 69.2. 32 (chia hết cho 32)
87 - 218 = (23)7 - 218 = 221 - 218
= 218. 23 - 218.1 = 218.(8 - 1)
= 218 . 7 = 217 . 2 . 7 = 217 . 14 (chia hết cho 14)
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
trả lời giúp mình cái mình rất gấp
21^20-11^10=(........1)-(..........1)=(...........0) chia hết cho 2 và 5
=>21^20-11^10 chia hết cho 2 và 5 (đpcm)