tìm x thuộc N biết 2x22 + 3x23 + 4x24 + 5x25 + nx2n = 2n+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\)
\(A=\frac{1}{1.21}+\frac{1}{2.22}+...+\frac{1}{80.100}\Rightarrow20A=\frac{20}{1.21}+\frac{20}{2.22}+.....+\frac{20}{80.100}=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+.....+\frac{1}{80}-\frac{1}{100}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\frac{1}{81}-\frac{1}{82}-....-\frac{1}{100}\)
\(B=\frac{1}{1.81}+\frac{1}{2.82}+.....+\frac{1}{20.100}\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+....+\frac{80}{20.100}=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}-....+\frac{1}{20}-\frac{1}{100}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{20}-\frac{1}{81}-\frac{1}{82}-.....-\frac{1}{100}\)
\(\Rightarrow20A=80B\Leftrightarrow A=4B\Rightarrow\frac{A}{B}=4\)
sao 1-1/21+1/2-1/22+1/3-1/23+...+1/80-1/100 lại bằng 1+1/2+1/3+...+1/20-1/81-1/82-...-1/100 đúng ra phải là 1+1/2+1/3+...+1/80-1/21-1/22-1/23-...-1/100
Bạn tham khảo ở câu hỏi này nhé :
Câu hỏi của Nguyễn Kim Chi - Toán lớp 6 | Học trực tuyến
8: DKXĐ: x-1>=0 và 2-2x>=0
=>x>=1 và x<=1
=>x=1
9: ĐKXĐ: x^2-1>=0 và 4-4x^2>=0
=>x^2>=1 và x^2<=1
=>x^2=1
=>x=1 hoặc x=-1
10: ĐKXĐ: x-1>=0 và 3-x>=0
=>1<=x<=3
Gọi d là UCLN của 2n+1 và 3n+1
Ta có :
\(2n+1⋮d\)
\(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Nhận xét:
\(2+2^2+2^3+...+2^n=2\left(1+2+2^2+...+2^{n-1}\right)=2\left(2^n-1\right)=2^{n+1}-2\)
\(2^2+2^3+2^4+...+2^n=2^2\left(1+2+2^2+...+2^{n-2}\right)=2^2\left(2^{n-1}-1\right)=2^{n+1}-2^2\)
Tương tự
\(2^3+2^4+2^5+...+2^n=2^{n+1}-2^3\)
...
\(2^n=2^{n+1}-2^n\)
Cộng vế với vế ta được:
\(2+2\cdot2^2+3\cdot2^3+4\cdot2^4+...+n\cdot2^n=n\cdot2^{n+1}-\left(2+2^2+2^3+...+2^n\right)=n\cdot2^{n+1}-2^{n+1}+2\)
\(\Rightarrow2\cdot2^2+3\cdot2^3+4\cdot2^4+...+n\cdot2^n=\left(n-1\right)\cdot2^{n+1}\)(1)
Theo giả thiết thì VT(1) = 2n+10. Ta có:
\(2^{n+10}=\left(n-1\right)\cdot2^{n+1}\Leftrightarrow2^{n+1}\cdot2^9=\left(n-1\right)\cdot2^{n+1}\Leftrightarrow n-1=2^9\Leftrightarrow n=2^9+1\)
Vậy, n = 29 + 1.
(Đề bài thì hay mà bạn đánh câu hỏi cẩu thả quá! :D).
Đinh Thùy Linh ơ đề bài bảo tìm x mà