Cho đường tròn (O)(O) có ABAB là một dây cung cố định không đi quá OO . Từ một điểm MM bất kì trên cung lớn AB ( M ko trùng A và B ) kẻ dây cung MN vuông góc với AB tại H . Gọi MQ là đường cao của tam giác AMN. a)a) Chứng minh tứ giác AMHQ nội tiếp đường tròn b)b) Gọi I là giao điểm của AB và MQ chứng minh tam giác IBM cân .. c)c) Kẻ MP vuông góc với BN tại P . Xác định vị trí của M sao cho MQ . AN + MP . BN đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AHMQ có
\(\widehat{AHM}\) và \(\widehat{AQM}\) là hai góc đối
\(\widehat{AHM}+\widehat{AQM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AHMQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,H,M,Q cùng nằm trên một đường tròn(đpcm)
b) Ta có: AHMQ là tứ giác nội tiếp(cmt)
nên \(\widehat{QAH}+\widehat{QMH}=180^0\)(Định lí tứ giác nội tiếp)
\(\Leftrightarrow\widehat{QAB}+\widehat{QMN}=180^0\)
mà \(\widehat{QAB}+\widehat{NAB}=180^0\)(hai góc kề bù)
nên \(\widehat{QMN}=\widehat{NAB}\)(1)
Xét (O) có
\(\widehat{NAB}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)
\(\widehat{BMN}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)
Do đó: \(\widehat{NAB}=\widehat{BMN}\)(Hệ quả góc nội tiếp)(2)
Từ (1) và (2) suy ra \(\widehat{QMN}=\widehat{BMN}\)
mà tia MN nằm giữa hai tia MQ và MB
nên MN là tia phân giác của \(\widehat{QMB}\)(đpcm)
Bạn tự vé hình nhé! Có 2 cách để vẽ hình
Mình giải câu (d) cho bạn nhé
Ta có: \(\hept{\begin{cases}2S_{\Delta MAN}=MQ\cdot AN\\2S_{\Delta MBN}=MP\cdot BN\end{cases}}\)
Cộng vế với vế ta được \(2S_{\Delta MAN}+2S_{\Delta MBN}=MQ\cdot AN+MP\cdot BN\)
Ta lại có:
\(2S_{\Delta MAN}+2S_{\Delta MBN}=2\left(S_{\Delta MAN}+S_{\Delta MBN}\right)=2\cdot\frac{AB\times MN}{2}=AB\cdot MN\)
Vậy \(MQ\cdot AN+MP\cdot BN=AB\cdot MN\)
Mà AB không đổi nên tích AB x MN lớn nhất
<=> MN lớn nhất
<=> MN là đường kính
<=> M là điểm chính giữa cung AB