cho tam giác abc o là điểm nằm trong tam giác.cm tổng khoảng cách từ o đến 3 điểm dỉnh của tam giác lớn hơn nủa chu vi nhưng nhỏ hơn chu vi của tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA
=> MA + MB < MI + IA + MB
=> MA + MB < IB + IA (1)
tương tự ta có: IB < IC + BC
=> IB + IA < IC + BC + IA
=> IB + IA < AC + BC (2)
từ (1) và (2) => MA + MB < AC + BC (3)
tương tự ta cũng có: MA + MC < AB + BC (4)
MB + MC < AB + AC (5)
cộng theo vế (3) ; (4) ; (5) ta có:
MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC
2( MA + MB + MC) < 2( AB + AC + BC)
MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)
áp dụng đ/lý bất đẳng thức tam giác ta có:
AB < MA + MB
AC < MA + MC
BC < MC + MB
cộng theo vế của các bất đẳng thức trên ta có:
AB + AC + BC < MA + MB + MA + MC + MC + MB
AB + AC + BC < 2( MA + MB + MC)
AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)
từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC
vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC
ap dụng đinh lí bất dẳng thức tam giác ta cóMA<MI+IA
TA cộng cả 2 vế trên với MB ta có MA+MB<MI+MB+IA
MA+MB< IB +IA (1)
tương tự ta có IB<IC+BC
Cộng cả hai vế trên vớiIA ta có IB+IA<IC+IA+BC
IB+IA<AC+ BC(2)
từ (1) và (2) ta được MA+MB<IA+IB<AC+BC
hay MA+MB<AC+BC (3)
Tương tự như vậy ta cũng có MA+MC<AB+BC(4)
MB+MC<AB+AC (5)
CÔng theo vế của (3),(4).(5) ta được
MA+MB+MA+MC+MB+MC<AC+BC+AB+BC+AB+AC
2(MA+MB+MC)<2(AB+AC+BC)
MA+MB+MC<AC+AB+BC(cùng chia 2 vế cho 2)(**)
Aps dụng đ/l bất đẳng thức tam giác ta có
AB<MB+MA
AC<MA+MC
BC<MC+MB
cộng theo vế của các bất đảng thức trên ta được
AB+AC+BC<MB+MA+MA+MC+MC+MB
AB+AC+BC<2(MA+MB+MC)
AB+AC+BC/2<MA+MB+MC (CHIA CẢ HAI VẾ CHO 2) (*)
TỪ (**) VÀ (*) ta suy ra
AB+AC+BC/2<MA+MB+MC<AB+AC+BC
vậy MA+MB+MC lớn hơn nửa chu vi và nhỏ hơn chu vi cua tam giác ABC