Rút gọn D, biết D=\(\frac{1}{\sqrt{2}+2}\)+ \(\frac{1}{3\sqrt{2}+2\sqrt{3}}\)+ \(\frac{1}{4\sqrt{3}+3\sqrt{4}}\)+........................+ \(\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
=\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)
=\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
=\(1-\frac{1}{\sqrt{2016}}\)
đến đây cậu tự giải nốt nhé
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
\(P=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(P=1+\sqrt{2}\)
bởi vì tách \(4=\sqrt{4}+\sqrt{4}\)
các bài khác tương tự
Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{2-1}{1+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+\frac{4-3}{\sqrt{3}+\sqrt{4}}+...+\frac{2016-2015}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{\left(\sqrt{2}\right)^2-1}{1+\sqrt{2}}+\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+\sqrt{4}}+...+\frac{\left(\sqrt{2016}\right)^2-\left(\sqrt{2015}\right)^2}{\sqrt{2015}+\sqrt{2016}}=.\)
\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{1+\sqrt{2}}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{3}+\sqrt{4}}+...=.\)
\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2016}-\sqrt{2015}\)
\(=\sqrt{2016}-1\). đpcm
\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)
đkxđ x>=2,x>0
\(\frac{3}{2}\sqrt{4\left(x-2\right)}-9\sqrt{\frac{x-2}{81}}=6\)
đặt t=x-2
\(\frac{3}{2}\sqrt{4t}-9\sqrt{\frac{t}{81}}=6\)
\(\frac{3}{2}.2\sqrt{t}-9\frac{\sqrt{t}}{9}=6\)
\(3\sqrt{t}-\sqrt{t}=6\)
\(2\sqrt{t}=6\)
\(\sqrt{t}=3=>t=9\)
thế t vào x-2 ta được
x-2=9<=> x=11 (thỏa)
S={11}
Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng đẳng thức trên vào D ta được:
\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)