(a+b+c)2=3.(ab+bc+ca). Cmr a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html
dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Lời giải:
Do $a,b,c\leq 2$ nên:
$(a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc+4(a+b+c)-2(ab+bc+ac)-8\leq 0$
$\Leftrightarrow abc+4-2(ab+bc+ac)\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4\geq 4$ (do $abc\geq 0$)
$\Rightarrow ab+bc+ac\geq 2$ (đpcm)
Từ giả thuyết ta có :
\(a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2.0\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
T I C K ủng hộ nha
Chúc bạn học tốt