Cho a,b,c \(\in\)N *. So sánh :
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với 2
Đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)và \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}<\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
a) Ta có: a<b
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow ac+ab< bc+ab\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)
b) Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)
hay \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(1)
Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế theo vế, ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}=2\)(2)
Từ (1) và (2) suy ra \(1< A< 2\)
hay A không phải là số nguyên(đpcm)
cần gấp mai sẽ lam cho
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)\)
\(< 3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)
=>M < 2