cho hai điểm A,b và gương phẳng G như hình vẽ .Hãy trình bày cách vẽ tia sáng xuất phát từ A đến gặp gương G tại I và phản xạ đến B.Chứng tỏ rằng đường truyền của tia sáng trên là duy nhất
lý lớp 7 đó ai giải tự luận và nhanh nhất mình chọn cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vẽ hình như trên.
b) chứng minh hai tia JR // SI
Ta có do hai pháp tuyển N1 và N2 vuông góc nên ta có \(i'+i_1 = 90^0\)
mà \(i=i'; i_1 = i_1' => i+i'+i_1+i_1' = 90+90 = 180^0\)
=> JR//SI (tổng hai góc trong cùng phía bằng 180 độ)
Cách vẽ:
Gọi: S' là ảnh của S qua gương 1.
\(\Rightarrow\) Tia tới qua gương 1 tạo ra tia phản xạ đi qua S'.
Gọi: S'' là ảnh của S qua gương 2.
\(\Rightarrow\) Tia tới khi qua gương 2 cho tia phản tạo ta tia phản xạ đi qua S
\(\Rightarrow\) Tia tới sẽ đi qua S''.
Giả sử S', S'' cắt G tại A và G' tại B.
\(\Rightarrow\) SABS là đường truyền tia sáng cần vẽ.
Chứng minh:
Ta có: \(\left\{{}\begin{matrix}\widehat{SAG}=\widehat{OAB}\\\widehat{OBA}=\widehat{SBG'}\end{matrix}\right.\)
\(\widehat{ASB}+\widehat{SAB}+\widehat{SBA}=90^0\)
\(\widehat{SAB}+2\widehat{OAB}=180^0\) \(\Rightarrow\widehat{SAB}=180^0-2\widehat{0AB}\)
\(\widehat{SBA}+2\widehat{OAB}=180^0\Rightarrow\widehat{SBA}=180^0-2\widehat{OAB}\)
\(\Rightarrow\widehat{ASB}+180^0-2\widehat{0AB}+180^0-2\widehat{OBA}=180^0\)
\(\Leftrightarrow\widehat{ASB}+2\left(180^0-\widehat{0AB}-\widehat{0BA}\right)=180^0\)
\(\Leftrightarrow\widehat{ASB}+2\alpha=180^0\)
\(\Rightarrow\widehat{ASB}=180^0-2\alpha\)
Vậy \(\widehat{ASB}\) không phụ thuộc vào góc tới mà phụ thuộc vào góc hợp bởi 2 gương (đpcm).
a) Chọn S1 đối xứng S qua gương M1 ; Chọn O1 đối xứng O qua gương M2 , nối S1O1 cắt gương M1 tại I , gương M2 tại J. Nối SIJO ta được tia cần vẽ
b) DS1AI ~ D S1BJ
Þ A I B J = S 1 A S 1 B = a a + d
Þ AI = a a + d .BJ (1)
Xét DS1AI ~ D S1HO1
Þ A I H O 1 = S 1 A S 1 H = a 2 d
Þ AI = a 2 d . h thay vào (1) ta được BJ = ( a + d ) . h 2 d
Vẽ ảnh N' của N qua gương
Nối M với N, MN cắt gương tại I
Nối I với N ta đc tia phản xạ của tia tới MI