a) A = \(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+.......+\frac{4}{99\cdot100}\)
b) B = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{45}\)
c) C = \(\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+......+\frac{6}{99\cdot101}\)
e) E = \(\frac{4}{1\cdot3}+\frac{4}{3.5}+\frac{4}{5.7}+......+\frac{4}{205.207}\)
f) F = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}\)
- Có 54 số hạng
g) G = \(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...\)
- Tổng này có 20 số hạng
CHÚ Ý : DẤU CHẤM LÀ DẤU NHÂN
c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3\left(1-\frac{1}{101}\right)\)
\(=\frac{300}{101}\)
a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=4\left(1-\frac{1}{100}\right)\)
\(=\frac{99}{25}\)