K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC và ΔMDB có

DA=DM

\(\widehat{ADC}=\widehat{MDB}\)

DC=DB

Do đo: ΔADC=ΔMDB

b: Xét ΔAKN và ΔBKM có

KA=KB

\(\widehat{AKN}=\widehat{BKM}\)

KN=KM

Do đó; ΔAKN=ΔBKM

c: Xét tứ giác ABMC có

D là trung điểm của AM

D là trung điểm của BC

Do đó: ABMC là hình bình hành

SUy ra: AC//BM

Xét tứ giác ANBM có

K là trung điểm của AB

K là trung điểm của MN

Do đó: ANBM là hình bình hành

Suy ra: AN//BM

mà AC//BM

nên A,N,C thẳng hàng

mà AC=AN

nên  A là trung điểm của CN

28 tháng 7 2018

bài này dễ mà bạn cứ chứng minh theo trường hợp c.g.c thôi còn câu c thì bạn chứng minh BN và BM cùng bằng AC thôi

28 tháng 7 2018

bạn giải cho mình đc k

16 tháng 7 2019
Cho mik hỏi bạn đã giải đc bào này chưa ak nếu bạn giải đc thì bạn cho mik xin cách làm của bài 1 ak Mik cảm ơn
25 tháng 11 2019

Ảnh đẹp thì

BÀI 1:Cho tam giác ABC có góc =90°,trên cạnh BC lấy điểm E sao cho BE=BA .Tia phân giác của góc B cắt AC tại D .  a, So sánh độ dài DA và DE  b, Tính số đo góc BED c,Gọi I là trung điểm của AE vàe BDCMR:BD là đg trung trực của AEBài 2:Cho tam giá ABC có B=2C . Tia phân giác của góc  B cắt AC tại D.Trên tia đối tia BD lấy điểm E sao cho BE=AC.Trên tia đối tia CB lấy điểm K sao cho CK=AB a, CM:Tam giác EBA=tam giác...
Đọc tiếp

BÀI 1:

Cho tam giác ABC có góc =90°,trên cạnh BC lấy điểm E sao cho BE=BA .Tia phân giác của góc B cắt AC tại D . 

 a, So sánh độ dài DA và DE 

 b, Tính số đo góc BED

 c,Gọi I là trung điểm của AE vàe BD

CMR:BD là đg trung trực của AE

Bài 2:

Cho tam giá ABC có B=2C . Tia phân giác của góc  B cắt AC tại D.Trên tia đối tia BD lấy điểm E sao cho BE=AC.Trên tia đối tia CB lấy điểm K sao cho CK=AB

 a, CM:Tam giác EBA=tam giác ACK

 b, CM : EK=AK

BÀI 3:

Cho tam giác ABC . Gọi K , D lần lượt là trung điểm của cạnh AB,AC . Trên tia đối tia DA lấy điểm M sao cho DM=DA . Trên tia đối tia KM lấy điểm N sao cho KN=KM . CM:

      a, Tam giác ADC=tam giác ADB

      b, Tam giác AKN= tam giác BKM

      c, A là trung điểm của đoạn thẳng NC

Bài 4:

Cho tam giác ABC có góc B >góc C , đg cao AH

 a, CM : AH < 1/2 (AB+AC)

b, Hai đg trung tuyến BM,CN cắt nhau tại G . Trên tia đối tia MB  lấy điểm E sao cho ME=MG . Trên tia đối tia NC lấy điểm F sao cho NF=NG.CM:EF=BC

c, Đg thẳng AG cắt BC tại K . CM góc AKB > góc AKC

0
16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.