Tính giá trị của biểu thức:
A=1/2x3+1/6x5+1/10x7+...+1/198x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
\(\Rightarrow2A-A=2-\dfrac{1}{2^{2012}}\)
\(\Rightarrow A=2-\dfrac{1}{2^{2012}}\)
\(A= 1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\)\(\dfrac{1}{2^{2012}}\)
⇒\(2A=2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\)
⇒\(2A-A=(2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\))\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
⇒\(A=2-\)\(\dfrac{1}{2^{2012}}\)
\(A=3\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\forall x\)
Dấu "=" xảy ra
\(\Leftrightarrow3.\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow x=\dfrac{1}{2}\)
\(a,=\dfrac{5}{6}+\dfrac{6}{7}\\ =\dfrac{35}{42}+\dfrac{36}{42}=\dfrac{71}{42}\\ b,=\dfrac{5}{6}+\dfrac{4}{9}\\ =\dfrac{15}{18}+\dfrac{8}{18}=\dfrac{23}{18}\)
\(A=2x+xy^2-x^2y-2y\)
\(=2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(2-xy\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)
\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)
\(tanx=\dfrac{1}{2}\Leftrightarrow\dfrac{sinx}{cosx}=\dfrac{1}{2}\Leftrightarrow cosx=2sinx\)
\(1+tan^2x=\dfrac{1}{cos^2x}\) \(\Leftrightarrow cos^2x=\dfrac{4}{5}\)
=> \(sin2x=2sinx.cosx=cos^2x\)
\(A=\dfrac{2sin2x}{2-3cos2x}=\dfrac{2cos^2x}{2-3\left(cos^2x-1\right)}=\dfrac{8}{13}\)
a: \(2\dfrac{3}{5}+1\dfrac{2}{5}\cdot\dfrac{31}{2}\)
\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{31}{2}\)
\(=\dfrac{26}{10}+\dfrac{217}{10}=\dfrac{243}{10}\)
b: \(4\dfrac{3}{4}-3\dfrac{2}{3}:1\dfrac{1}{6}\)
\(=\dfrac{19}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)
\(=\dfrac{19}{4}-\dfrac{11}{3}\cdot\dfrac{6}{7}\)
\(=\dfrac{19}{4}-\dfrac{22}{7}\)
\(=\dfrac{19\cdot7-22\cdot4}{28}=\dfrac{45}{28}\)
Ta có:
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(=\frac{2}{\left(2.3\right).2}+\frac{2}{\left(6.5\right).2}+\frac{2}{\left(10.7\right).2}+...+\frac{2}{\left(198.101\right).2}\)
\(=\frac{2}{2.\left(3.2\right)}+\frac{2}{6.\left(5.2\right)}+\frac{2}{10.\left(7.2\right)}+...+\frac{2}{198.\left(101.2\right)}\)
\(=\frac{2}{2.6}+\frac{2}{6.10}+\frac{2}{10.14}+...+\frac{2}{198.202}\)
\(=\frac{4}{2.6}:2+\frac{4}{6.10}:2+\frac{4}{10.14}:2+...+\frac{4}{198.202}:2\)
\(=\left(\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{198.202}\right):2\)
\(=\left(\frac{1}{2}-\frac{1}{202}\right):2\)
\(=\frac{50}{202}=\frac{25}{101}\)
Vậy \(A=\frac{25}{101}\)
frac,left,right là gì vậy ?