Chứng minh bài toán sau : nếu 1 đường thẳng đi qua trung điểm 1 cạnh của tam giác song song với cạnh thứ 2 thì đi qua trung điểm cạnh còn lại
mong các bạn giúp mình . Cảm ơn các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài minh hoạ:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh .
Chứng minh định lý:
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): (1)
Xét hai tam giác BMF và MAN, có: (hai góc đồng vị), và (hai góc đồng vị). Suy ra (trường hợp góc - cạnh - góc), từ đó suy ra (2)
Từ (1) và (2) suy ra . Định lý được chứng minh.
Định lý 2
Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]
Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh và .
Chứng minh định lý:
Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: (trường hợp cạnh - góc - cạnh)
suy ra . Hai góc này ở vị trí so le trong lại bằng nhau nên hay . Mặt khác vì hai tam giác này bằng nhau nên , suy ra (vì ). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra hay . Mặt khác, , mà (tính chất hình bình hành), nên . Định lý được chứng minh.
D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
ta lay vd 1 de bai de chung minh:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh
ta chung minh dinh ly
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): (1)
Xét hai tam giác BMF và MAN, có: (hai góc đồng vị), và (hai góc đồng vị). Suy ra (trường hợp góc - cạnh - góc), từ đó suy ra (2)
Từ (1) và (2) suy ra . ( dieu phai chung minh )
D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy
VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh và
chung minh dinh li
Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: (trường hợp cạnh - góc - cạnh)
suy ra . Hai góc này ở vị trí so le trong lại bằng nhau nên hay . Mặt khác vì hai tam giác này bằng nhau nên , suy ra (vì ). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra hay . Mặt khác, , mà (tính chất hình bình hành), nên
Cái Này Sẽ Được Chứng Minh Ở Bài Đường Trung Bình Lớp 8, Bạn Tra Mạng Sẽ Có Nhé!
Gọi D là trung điểm của BC, E là trung điểm của AC. Theo câu a)) đường thẳng qua D, song song với AB phải cắt AC tại trung điểm của AC nên đường thẳng đó phải đi qua E, hay DE // AB.
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
Đường trung trực cạnh nào bạn mà hình như đề bài của bạn sai rồi