CMR: nếu một tam giác có hai cạnh không bằng nhau, thì tổng của cạnh lớn hơn và đường cao tương ứng lớn hơn tổng của cạnh nhỏ hơn và đường cao tương ứng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì trong 1 tam giác chỉ có 1 đường cao chung
mà 1 cạnh dài,1 cạnh ngắn
nếu cộng thêm đường cao vào vs cạnh dài hơn
và cộng đường cao vào vs cạnh ngắn hơn
thì đương nhiên ta đã ra điều phải chứng minh rùi
mình k giỏi lập luận nên lấy ví dụ cho dẽ hiểu nè:
giả sử đường cao=2cm,cạnh dài=6cm,cạnh ngắn=4cm
tổng đường cao và cạnh dài:2+6=8
tổng đường cao và cạnh ngắn:2+4=6
đều có chung 2,6>4
=>điều phải chứng minh
Ta giả sử AB < AC . Cần chứng minh AB + CH < AC + BK
Trên cạnh AC lấy điểm D sao cho AB = AD . Từ D lần lượt hạ các đường vuông góc với AB và AC lần lượt tại E và F.
Ta có tam giác ADE = tam giác ABK (đặc biệt) => DE = BK
Xét : \(AC+BK=AD+DC+CH=AB+CD+HF\)(Vì DEHF là hình chữ nhật => BK = DE = HF)
Mà trong tam giác vuông DFC có cạnh huyền CD nên ta có \(DC>CF\)
\(\Rightarrow AC+BK=AB+CD+HF>AB+CF+HF=AB+CH\)
xét tam giác ABC vuông tại cao có đường cao AH và đường trung tuyến AM
khi đó tam giác AHM là tam giác vuông tại H nên
ta có \(AH\le AM\text{ mà }AM=\frac{1}{2}BC\)
nên ta có
Mình có 2 cách bạn chọn cách nào cũng được nhé.
Cách 1: Giả sử tam giác ABC vuông tại A có đường cao AH . Khi đó, theo hệ thức lượng trong tam giác vuông, ta có:
\(AH^2=BH.CH\)\(\Rightarrow AH=\sqrt{BH.CH}\)
Mặt khác nửa cạnh huyền chính là \(\frac{BC}{2}=\frac{BH+CH}{2}\)
Theo BĐT Cô-si, ta có \(\sqrt{BH.CH}\le\frac{BH+CH}{2}\)hay \(AH\le\frac{BC}{2}\)
Dấu "=" xảy ra khi \(BH=CH\)\(\Rightarrow\)đường cao AH cũng là trung tuyến \(\Rightarrow\Delta ABC\)vuông cân tại A.
Cách 2: Giả sử tam giác ABC vuông tại A có đường cao AH, trung tuyến AM.
Ta ngay lập tức có được \(AM=\frac{BC}{2}\)
Vì AH, AM lần lượt là đường vuông góc và đường xiên hạ từ A đến BC \(\Rightarrow AH\le AM\)hay \(AH\le\frac{BC}{2}\)
Dấu "=" xảy ra khi \(AH\equiv AM\)hay \(\Delta ABC\)vuông cân tại A.