Tìm giá trị nhỏ nhất hoặc lớn nhất ( nếu có ) của các biểu thức sau:
a) /x+ 1/2/ b) /3/5 -x / + 1/9 c) 2004/2003 - /x-3/5/ d)-2003/2002 -/2000/2001 - x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=124-5\left|x-7\right|\Leftrightarrow-5\left|x-7\right|+124\)
+Có: \(-5\left|x-7\right|\le0với\forall x\\ \Rightarrow-5\left|x-7\right|+124\le124\\ \Leftrightarrow A\le124\)
+Dấu "=" xảy ra khi \(\left|x-7\right|=0\Leftrightarrow x=7\)
+Vậy \(B_{min}=124\) khi \(x=7\)
\(C=\dfrac{2004}{2003}-\left|x-\dfrac{3}{5}\right|< =\dfrac{2004}{2003}\)
Dấu '=' xảy ra khi x=3/5
\(D=-\dfrac{2003}{2002}-\left|2x-\dfrac{2000}{2001}\right|< =-\dfrac{2003}{2002}\)
Dấu '=' xảy ra khi x=1000/2001
a)Ta thấy:
\(\left|x\right|+2003\ge2003\)
\(\Rightarrow\frac{1}{\left|x\right|+2003}\le\frac{1}{2003}\)
\(\Rightarrow\frac{2002}{\left|x\right|+2003}\le\frac{2002}{2003}\)\(\Rightarrow A\le\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxA=\(\frac{2002}{2003}\Leftrightarrow x=0\)
b)Ta thấy:
\(-\left|x\right|\le0\)\(\Rightarrow-\left|x\right|+2002\le2002\)
\(\Rightarrow\frac{-\left|x\right|-2002}{2003}\le\frac{-2002}{2003}\Rightarrow B\le-\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxB=\(-\frac{2002}{2003}\Leftrightarrow x=0\)
a) \(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(=\dfrac{1}{2004}\)
b) \(B=5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}.\dfrac{9}{2}-2.\dfrac{7}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\left(\dfrac{21}{2}-\dfrac{14}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{35}{6}.\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{10}{3}\)
\(=\dfrac{3}{5}\)
đặt \(A=2004^{2003}+2004^{2002}+...+2004^2+2004+1\)
\(2004A=\left(2004^{2004}+2004^{2003}+2004^{2002}+...+2004^3+2004^2+2004\right)\)
\(2004A-A=2004^{2004}-1\)
\(A=\frac{2004^{2004}-1}{4}\)
mình chỉ biết đến đây thôi