Chứng minh rằng: 27^10+3^29+9^14 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3^{30}+3^{29}+3^{28}=3^{28}\left(3^2+3+1\right)=3^{28}\cdot13⋮13\)
Ta có : \(27^{10}+3^{29}+9^{14}=\left(3^3\right)^{10}+3^{29}+\left(3^2\right)^{14}\)
\(=3^{30}+3^{29}+3^{28}\)
\(=3^{28}\left(3^2+3+1\right)=3^{28}\left(9+3+1\right)\)
\(=3^{28}\cdot13⋮13\left(đpcm\right)\)
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
2710 + 329 + 914 chia hết cho 3 (Các số hạng đều chia hết cho 3)
\(27^{10}+3^{29}+9^{14}=3^{30}+3^{29}+3^{28}=3^{28}\cdot\left(3^2+3+1\right)=3^{28}\cdot13\)chia hết cho 13
\(27^{10}+3^{29}+9^{14}\)
\(=\left(3^3\right)^{10}+3^{29}+\left(3^2\right)^{14}\)
\(=3^{30}+3^{29}+3^{28}\)
\(=3^{28}.\left(3^2+3+1\right)\)
\(=3^{28}.\left(9+3+1\right)\)
\(=3^{28}.13\)chia hết cho 13
=> đpcm
Ủng hộ mk nha ^_-