K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)

\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)

Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(2k-1=1\Rightarrow k=1\)

Khi đó \(p=2\) (thỏa mãn)

TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))

\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)

Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)

Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)

Vậy \(p=\left\{2;5\right\}\)

20 tháng 8 2021

Em cảm ơn

DD
20 tháng 8 2021

\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)

 \(p=2+3+...+n\)

\(p=n+n-1+...+2\)

\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)

\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)

- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)

nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).

- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)

do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).

Vậy \(p=2\)hoặc \(p=5\).

16 tháng 9 2015

Ta có \(p=\frac{1}{2}n\left(n+1\right)-1=\frac{n^2+n-2}{2}=\frac{\left(n-1\right)\left(n+2\right)}{2}\). Vì \(p\) là số nguyên tố, nên \(n\) là số nguyên lớn hơn \(1\).

Với \(n=2\to p=2\) thỏa mãn.

Với \(n=3\to p=5\) thỏa mãn

Với \(n\ge4:\) Nếu \(n\) là số chẵn thì \(p=\left(n-1\right)\cdot\frac{n+2}{2}\) là tích của hai số lớn hơn \(1\) nên \(p\) không phải là số nguyên tố. Nếu \(n\) là số lẻ, thì \(p=\frac{n-1}{2}\cdot\left(n+2\right)\) là tích của hai số lớn hơn \(1\) nên \(p\) không phải là số nguyên tố.

Vậy chỉ có 2 số nguyên tố thỏa mãn là \(p=2,5.\)

15 tháng 7 2021

n có dạng 2k, 2k+1

nếu n có dạng 2k thì p= (n-1)(n+2)/2=(2k-1).(2k+2)/2=(2k-1)(k+1) mà p là số nguyên tố suy ra

\(\orbr{\begin{cases}2k-1=1\\k+1=1\end{cases}\Rightarrow\orbr{\begin{cases}2k=2\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}p=2\left(N\right)\\p=-1\left(L\right)\end{cases}}}\) 

nếu n có dạng 2k+1 thì p= (n-1)(n+2)/2=k.(2k+3) mà p là số nguyên tố suy ra

\(\orbr{\begin{cases}k=1\\2k+3=1\end{cases}\Rightarrow\orbr{\begin{cases}k=1\\2k=-2\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=-1\end{cases}\Rightarrow}\orbr{\begin{cases}n=3\\n=-1\end{cases}\Rightarrow}\orbr{\begin{cases}p=5\left(N\right)\\p=-1\left(L\right)\end{cases}}}\)

vậy n=2 và n=3 thì p là số nguyên tố hay p=5,p=3 là số nguyên tố có dạng (n-1)(n+2)/2

1 tháng 7 2015

\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)

Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)

Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)

Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)

Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)

cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2

Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2

cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ

 

1 tháng 7 2015

Thạch ơi, cái bài này mk giải như thế đúng k?

31 tháng 8 2016

\(n\left(n+1\right)\left(n+2\right)⋮3\)

\(n\left(n+1\right)\left(n+2\right)⋮2\)

Có ƯCLN (2,3) = 1

Nên: \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)

Lại có: \(1=\frac{6}{6}⋮6\)

Vậy: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\)