cho a/b=c/d. Chứng minh 2a+5b/2a-5b=2c+5d/2c-5d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)
\(\left(2a+3b\right)\left(4c-5d\right)=\left(4a-5b\right)\left(2c+3d\right)\)
\(\Leftrightarrow8ac-10ad+12bc-15bd=8ac+12ad-10bc-15bd\)
\(\Leftrightarrow-10ad+12bc=12ad-10bc\)
\(\Leftrightarrow\left(-10ad+12bc\right)+\left(-12bc-12ad\right)=\left(12ad-10bc\right)+\left(-12bc-12ad\right)\)
\(\Leftrightarrow22bc=22ad\)
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Vậy...
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{2a-3b}{5b}=\frac{2c-3d}{5d}\\ \Leftrightarrow\frac{d}{b}=\frac{2c-3d}{2a-3b}\)
Áp dụng TCDTSBN ta có:
\(\frac{d}{b}=\frac{2c-3d}{2a-3b}=\frac{d+2c-3d}{b+2a-3b}=\frac{2c-2d}{2a-2b}=\frac{c-d}{a-b}\)
\(\Rightarrow\frac{d}{b}=\frac{c-d}{a-b}\)
Áp dụng TCDTSBN ta có:
\(\frac{d}{b}=\frac{c-d}{a-b}=\frac{d+c-d}{b+a-b}=\frac{c}{a}\\ \Rightarrow\frac{d}{b}=\frac{c}{a}\\ \Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(Theo.gt\right)\\ \Rightarrow dpcm\)
\(\frac{a}{b}=\frac{c}{d}=>\frac{2a}{5b}=\frac{2c}{5d}=>\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}=\frac{2a-5b}{2c-5d}=>\frac{2a+5b}{2a-5b}=\frac{2c+5d}{2c-5d}\)