Tìm x (áp dụng phương pháp đặt nhân tử chung)
b) 2.(x+3)-x^2-3x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,3x.(x-1)+x-1=0
3x(x-1) +(x-1) =0
(3x+1)(x-1) =0
Th1: 3x+1 =0
3x = -1
x= -1/3
Th2: x-1 =0
x=1
Vậy x= -1/3 và x=1
a,3x.(x-1)+x-1=0
=> (x - 1) (3x + 1) = 0
=> x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1 hoặc x = \(\frac{-1}{3}\)
b,2.(x+3)-x2-3x=0
=> 2. (x + 3) - x (x-3) = 0
=> (x - 3) (2 - x) = 0
=> x - 3 = 0 hoặc 2 - x = 0
=> x = 3 hoặc x = 2
P/s: Mỗi chữ hoặc bạn thay = dấu [ nhé (Thay dấu này chắc bạn biết cách trình bày rồi nha)
- Nhớ tick [Nếu đúng] nha
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)
\(3x.\left(x-10\right)=\left(x-10\right)\)
\(\Rightarrow3x-\left(x-10\right)-\left(x-10\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\10\end{cases}}}\)
8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)
9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)
\(=\left(x-3\right)\left(4x+2\right)\)
=2(2x+1)(x-3)
3: \(=2\left(x+2\right)\left(25x-15-x\right)\)
\(=2\left(x+2\right)\left(24x-15\right)\)
=6(x+2)(8x-5)
1) 2x2 - 4x = 2x( x - 2 )
2) 3x - 6y = 3( x - 2y )
3) x2 - 3x = x( x - 3 )
4) 4x2 - 6x = 2x( x - 3 )
5) x3 - 4x = x( x2 - 4 ) = x( x - 2 )( x + 2 )
1) \(2x^2-4x=2x\left(x-2\right)\)
2) \(3x-6y=3\left(x-2y\right)\)
3) \(x^2-3x=x\left(x-3\right)\)
4) \(4x^2-6x=2x\left(2x-3\right)\)
5) \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)
7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)
8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)
9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)
10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)
6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )
7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )
8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )
9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )
10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )
\(\Leftrightarrow2.\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}}\)
nha
2.(x+3)-x^2-3x=0
<=> 2(x+3) -x.(x+3) = 0
<=> (2-x).(x+3) = 0
<=> 2-x = 0 hoặc x+3 = 0
<=> x= 2 hoặc x= -3
Vậy _____________