K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)

\(\Rightarrow (x+y-1)(a+b+c)=0\)

Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

Khi đó:

\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)

\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Ta có đpcm.

24 tháng 9 2018

x,y luôn thỏa mãn thì tại sao lại suy ra a+b+c=0 .Mong thầy giải thích giúp em.

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

29 tháng 10 2018

a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz

                  = x.(a+b+c) + y.(a+b+c) + z.(a+b+c)

                  = (a+b+c).(x+y+z) (1)

Lại có: a + b + c = -3 (2)

            x + y + z = -6 (3)

Từ (1) ; (2) ; (3) => A = -3.(-6) = 18

           Vậy A = 18

b) B = ax - bx - cx - ay + by + cy - az + bz +cz

       = x.(a-b-c) - y.(a-b-c) - z.(a-b-c)

       = (a-b-c).(x-y-z)

Lại có: a - b - c = 0 ; x - y - z = 2016

=> B = 0.2016 = 0

Vậy B = 0