K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

Để í ngoặc \(\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]\)

\(\Leftrightarrow\left[\frac{6}{7}+-\frac{6}{7}\right]\)

\(\Leftrightarrow0\)

Vậy biểu thức \(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)có giá trị bằng 0

30 tháng 7 2019

A=[2+4+6+...+100][3/5:0,7+3[-2/7]]:[1/2+1/4+1/6+...+1/100]

A=[2+4+6+...+100][6/7+[-6/7]]:[1/2+1/4+1/6+...+1/100]

A=[2+4+6+...+100][0]:[1/2+14+1/6+...+1/100]

A=0

CHỈ MK CÁCH VIẾT PHÂN SỐ ĐI

30 tháng 10 2015

( 0,1+ 0,2+...+0.9)+(0,10+0,11+...+0,19

=4,5+1,45=5,95

14 tháng 9 2015

Tính tổng: 1x2 + 2x3 + 3x4 + 4x5 +.............+ 99x100

 

Gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

3A= 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

3A = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

3A = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

3A = 99x100x101

A = 99x100x101 : 3

A = 333300

5 tháng 8 2017
cac ban co the ket voi mimh khong nic cua minh :huynh pham thien thu bui nguyen yen ngoc nuyen anh nguyet

HI CÁC ANH CHỊ

1. 1-2+3-4+5-6-.....+99-100

=(1-2)+(3-4)+(5-6)+...+(99-100)                              (50 cặp)

=(-1)+(-1)+(-1)+...+(-1)                                          (50 số -1)

=(-1).50

=-50

2.1+3-5-7+9+11-.....-397-399

=(1+3-5-7)+(9+11-13-15)+....+(387+389-391-393)+395-397-399 (99 cặp)

=(-8)+(-8)+(-8)+...+(-8)+(-401)(có 99 có -8)

=(-8).99+(-401)

=(-792)+(-401)

=-1193

3. 1-2-3+4+5-6-7+...+96+97-98-99+100

=(1-2-3+4)+(5-6-7+8)+...+(93-94-95+96)+(97-98-99+100)            (25 cặp)

=0+0+0+...+0

=0

4. A=2100-299-298-.....-22-2-1

2A=2101-2100-299-....-23-22-2

2A-A=A=2101-2100-2100+1

A=2101-2.2100+1

A=2101-2101+1

A=1

23 tháng 1 2020

                                                                Bài giải

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)

23 tháng 1 2020

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)