cho tam giac abc vuong tai a goi o la giao diem cac duong phan giac bd va ce lay diem m va n thuoc bc sao cho ba=bm ca=cn cm oa^2=1/2 mn^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)
Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A
b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)
\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)
\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)
2.
a)Nối A vs C
có\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)
hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O
b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOB}:chung\)
\(OB=OD\left(cmt\right)\)
\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)
c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\)
Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)
\(\widehat{ADO}=\widehat{CBO}\)
\(CD=BA\)
\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I
Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!