Giải bất phương trình
\(\sqrt{\frac{x+8}{x}}+\frac{\sqrt{x+8}}{x}< 3\left(\sqrt{x}+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
Điều kiện : \(x\ge1\)
\(3\left(x^2-2\right)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}\left(\sqrt{x-1}+3\sqrt{x^2-1}\right)\) \(\Leftrightarrow6\left(x^2-2\right)+\frac{8\sqrt{2}}{\sqrt{x^2-x+1}}-2\sqrt{x^2-x}-6\sqrt{x}\sqrt{x^2-1}>0\)
\(\Leftrightarrow3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-x}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-x}+1}+x^2-x-5\right)>0\)
Xét hàm số \(f\left(t\right)=\frac{4\sqrt{2}}{\sqrt{t+1}}+t-5,\left(t\ge0\right)\)
Ta có \(f'\left(t\right)=1-\frac{2\sqrt{2}}{\left(t+1\right)\sqrt{t+1}}\)
\(f'\left(t\right)=0\Leftrightarrow t=1\)
Bảng xét dấu :
x | 0 1 +\(\infty\) |
f'(x) | / - 0 + |
Suy ra \(f\left(t\right)\ge f\left(1\right)\), với mọi \(t\in\left[0;+\infty\right]\)\(\Rightarrow\) \(f\left(t\right)\ge0\), với mọi \(t\in\left[0;+\infty\right]\). Dấu = xảy ra \(\Leftrightarrow t=1\)
Do \(x^2-x\ge0\) với mọi \(x\in\left[0;+\infty\right]\)\(\Rightarrow\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ge0\) với mọi \(x\in\left[0;+\infty\right]\), dấu = xảy ra khi \(x^2-x=1\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)
Khi đó \(3\left(\sqrt{x^2-1}-\sqrt{x}\right)^2+\left(\sqrt{x^2-1}-1\right)^2+2\left(\frac{4\sqrt{2}}{\sqrt{x^2-1}+1}+x^2-x-5\right)>0\)
\(\Leftrightarrow\begin{cases}\sqrt{x^2-1}-\sqrt{x}\ne0\\\sqrt{x^2-x}-1\ne0\\\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}+x^2-x-5\ne0\end{cases}\) \(\Leftrightarrow x\ne\frac{1+\sqrt{5}}{2}\)
Tập nghiệm của bất phương trình đã cho là
\(S=\left(1;+\infty\right)\backslash\left(\frac{1+\sqrt{5}}{2}\right)\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
Điều kiện xác định :\(x\ne-1\)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)
\(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Đến đây thay n vào tính S nhé