Cho biết: x/(x^2+x+1)=a
Tính giá trị P=x^2/(x^4-x^2+1) theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(xy^3\right)\left(-\dfrac{3}{4}x^5x^4\right)\cdot\dfrac{8}{9}x^2y^3\)
\(=-\dfrac{2}{3}x^{12}y^6\)
Thay x = -1 và y = 1 vào biểu thức ta được :
\(A=-\dfrac{2}{3}\cdot\left(-1\right)^{12}.1^6=-\dfrac{2}{3}\)
Vậy : Tại x = -1 và y = 1 thì A có giá trị là \(\dfrac{2}{3}\)
\(P=\dfrac{x^2}{x^4+x^2+1}=\dfrac{x^2}{x^4+2x^2+1-x^2}=\dfrac{x^2}{\left(x^2+1\right)^2-x^2}=\dfrac{x^2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(=a\cdot\dfrac{x}{x^2+x+1}\)
Có \(a=\dfrac{x}{x^2-x+1}\Rightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)
Đặt \(B=\dfrac{x}{x^2+x+1}\Rightarrow\dfrac{1}{B}=\dfrac{x^2+x+1}{x}=x+\dfrac{1}{x}+1=\dfrac{1}{a}-2\)
\(\Leftrightarrow\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)
Do đó \(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)
Hic sao hay lỗi công thức thế :<
Do đó \(\dfrac{1}{B}=\dfrac{1-2a}{a}\Leftrightarrow B=\dfrac{a}{1-2a}\)
\(P=a\cdot\dfrac{a}{1-2a}=\dfrac{a^2}{1-2a}\)
a) Ta có: \(P=\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\cdot\dfrac{1-x^2}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\cdot\dfrac{-\left(x-1\right)\left(x+1\right)}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2\cdot\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^2-2x+1\right)\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3+2x^2-2x^2-4x+x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3-3x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-x^3+3x-2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^3+5x-6}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x^3-5x+6\right)}{2\left(x-1\right)\left(x+1\right)}\)
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
Ta có :
x/x^2 + x + 1 = -2/3
<=> -2x^2 - 2x - 2 = 3x
<=> -2x^2 - 5x - 2 = 0
<=> -2(x^2 + 5/2x + 1) = 0
<=> x^2 + 5/2x + 1 = 0
<=> x^2 + 2x.5/4 + 25/16 - 9/16 = 0
<=> (x+5/4)^2 = 9/16
<=> x + 5/4 = 3/4 hoặc x + 5/4 = -3/4
<=> x = -1/2 hoặc x = -2
Sau đấy thay vào ( easy )
a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)
b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)
Để P lớn nhất thì căn x-2=1
=>căn x=3
=>x=9