chứng tỏ rằng 1/101+1/102+...+1/299+1/300>2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)
Vì\(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)
\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)\(>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(mỗi cái trong ngoặc là một trăm phân số)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\left(\frac{1}{200}\right).100+\left(\frac{1}{300}\right).100\)
\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A>\frac{5}{6}\)
Mà 5/6>2/3=>A>2/3
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)
Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)
Vì \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)
\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{103}+.....\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}\right)\)
Tự làm tiếp nhé !!!
- Tham khảo ở đây đi : Câu hỏi của Nguyễn Thị Bích Phương - Toán lớp 6 | Học trực tuyến
Đặt A=\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\)
Vì \(\dfrac{1}{101}\)>\(\dfrac{1}{102}\)>\(\dfrac{1}{103}\)>...>\(\dfrac{1}{300}\)
=>(\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{201}\)+\(\dfrac{1}{202}\)+\(\dfrac{1}{203}\)+...+\(\dfrac{1}{300}\)) > (\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+...+\(\dfrac{1}{300}\)) =>\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) > \(\dfrac{1}{200}\).100 +\(\dfrac{1}{300}\) .100
=> A > \(\dfrac{1}{2}+\dfrac{1}{3}\)
=> A > \(\dfrac{5}{6}\) Mà \(\dfrac{5}{6}\)>\(\dfrac{2}{3}\)=> A > \(\dfrac{2}{3}\) Vậy \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) >\(\dfrac{2}{3}\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{98}{99}=\dfrac{1.2.3...98}{2.3.4...99}=\dfrac{1}{99}\)
\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\). . . . \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{2}{3}\)\(\ge\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(=\)\(\frac{200}{300}\)\(=\)\(\frac{2}{3}\)
do \(\frac{1}{101}\)..... \(\frac{1}{300}\)có 200 số
\(\Rightarrow\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)..... \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{1}{300}\)\(\times\)200
\(\ge\)\(\frac{2}{3}\)