cho tam giác abc cân tại a. trên tia đối bc lấy d. trên tia đối cb lấy e sao cho cd=be. a) chứng minh góc adb = góc ace
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
OC = OA + AC
OD = OB + BD
Mà OA = OB (gt)
AC = BD (gt)
\(\Rightarrow\) OC = OD
Xét \(\Delta OAD\) và \(\Delta OBC\) có:
\(\widehat{O}\) chung
OA = OB (gt)
OD = OC (cmt)
\(\Rightarrow\Delta OAD=\Delta OBC\) (c-g-c)
\(\Rightarrow AD=BC\) (hai cạnh tương ứng)
b) Do \(\Delta OAD=\Delta OBC\) (cmt)
\(\Rightarrow\widehat{BDE}=\widehat{ACE}\) (hai góc tương ứng)
\(\widehat{OAD}=\widehat{OBC}\) (hai góc tương ứng)
Mà \(\widehat{EAC}+\widehat{OAD}=180^0\) (kề bù)
\(\widehat{EBD}+\widehat{OBC}=180^0\) (kề bù)
\(\Rightarrow\widehat{EAC}=\widehat{EBD}\)
Xét \(\Delta EAC\) và \(\Delta EBD\) có:
\(\widehat{EAC}=\widehat{EBD}\) (cmt)
AC = BC (gt)
\(\widehat{ACE}=\widehat{BDE}\) (cmt)
\(\Rightarrow\Delta EAC=\Delta EBD\) (g-c-g)
a: ΔABC cân tại A nên góc ABC<90 độ
=>góc ABD>90 độ
=>AB<AD
b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
c: MB+BD=MD
MC+CE=ME
mà MB=MC và BD=CE
nên MD=ME
=>M là trung điểm của DE
=>AM là đường trung tuyến của ΔADE
d: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>HB=KC
f: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
a: Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
a: Xet ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác củagóc BCD
b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
=>ΔCEF cân tạiC
Xet ΔCDB có CE/CD=CF/CB
nên EF//DB
c: IE=IF
IF<IB
=>IE<IB
a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có
AH chung
HB=HK
Do đó: ΔAHB=ΔAHK
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{ADB}=\widehat{AEC}\)