K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

Giá trị nhỏ nhất là 9/2

29 tháng 8 2021

\(\dfrac{9}{2}\)

 
               
 
NV
27 tháng 12 2020

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

28 tháng 12 2020

mk nghĩ nên đăt =t (t>=3). cho dễ làm

14 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

17 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

30 tháng 5 2019

Bạn bik lm chưa chỉ mik bài 1 vs nhaok

NV
30 tháng 5 2019

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\) khi \(x=y\)

18 tháng 9 2017

2) Viết nhầm thì phải, vế phải là 12 nhỉ

\(x\left(x-1\right)+y\left(y-1\right)=x^2+y^2-\left(x+y\right)\ge\dfrac{\left(x+y\right)^2}{2}-\left(x+y\right)\ge\dfrac{6^2}{2}-6=12\)

1) \(x\ge2y>0\Rightarrow x^3\ge8y^3\)

\(P=\dfrac{x^2+y^2}{xy}=\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{4y^2}{4xy}\ge5\sqrt[5]{\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{4y^2}{4xy}}=5\sqrt[5]{\dfrac{x^3}{256y^3}}\ge5\sqrt[5]{\dfrac{8y^3}{256y^3}}=5\sqrt[5]{\dfrac{1}{32}}=\dfrac{5}{2}\)

NV
24 tháng 3 2021

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)

\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)

\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)

\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y\)

24 tháng 3 2021

Thầy Lâm hộ em ạ .

19 tháng 1 2021

a, \(y=\dfrac{\sqrt{x-2}}{x}=\sqrt{\dfrac{1}{x}-\dfrac{2}{x^2}}\ge0\)

\(min=0\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{x^2}=0\Leftrightarrow x=2\)

b, Áp dụng BĐT Cosi:

\(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\)

\(minf\left(x\right)=2\Leftrightarrow x=2\)

NV
18 tháng 3 2021

\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)

\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)

\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)

\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)

\(Q_{min}=1\) khi \(x=y=2\)

Đây là đề bài: Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều! Có \(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\) Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow...
Đọc tiếp

Đây là đề bài:Bài tập Toán

Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều!

\(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\)

Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow Min\left(1\right)=\dfrac{1}{2}\Leftrightarrow x=y\\\)

Xét nhóm 2: Vì \(x+y\le4\Rightarrow2\sqrt{xy}\le4\Rightarrow xy\le4\Rightarrow\dfrac{1}{xy}\ge\dfrac{1}{4}\Rightarrow Min\left(2\right)=\dfrac{1}{2}\Leftrightarrow xy=4\\ \)

Xét nhóm 3:Áp dụng BĐT Cô-si ta được:\(\dfrac{32}{xy}+2xy\ge2\sqrt{\dfrac{32}{xy}\cdot2xy}=16\Rightarrow Min\left(3\right)=16\Leftrightarrow x=y\\ \)

Từ các NX trên\(\Rightarrow MinP=\dfrac{1}{2}+\dfrac{1}{2}+16=17\left(ĐK:\right)x=y;xy=4hayx=y=2\)

0