CMR n=1984 là số tự nhiên lớn nhất để số 4^31+4^1008+4^n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!
https://olm.vn/hoi-dap/question/997557.html
Trong đây mình đã làm bài như vậy rồi nhé ! :D
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
Muốn pt trên đúng thi cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Ta có (n+1)4+n4+1= (n+1)4-n2+(n4+n2+1)
= (n2+2n+1)2-n2+(n4+n3+n2-n3-n2-n+n2+n+1)
= (n2+3n+1)(n2+n+1)+[n2(n2+n+1)-n(n2+n+1)+(n2+n+1)]
= (n2+3n+1)(n2+n+1)+(n2+n+1)(n2-n+1)
= (n2+n+1)(2n2+2n+2)
= 2(n2+n+1)2
Do 2 không phải là bình phương của một số tự nhiên nên (n+1)4+n4+1 không là bình phương của một số tự nhiên
Vậy (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên
Mk thêm vào một chút nhé.
Do 2 ko là bình phương của một số tự nhiên và n khác 0 nên 2(n2+n+1)2 ko là bình phương của một số tự nhiên n khác 0
=> (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên khác 0