K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHDC có 

N là trung điểm của HD

M là trung điểm của HC

Do đó: NM là đường trung bình của ΔHDC

Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)

mà AB//DC và \(AB=\dfrac{CD}{2}\)

nên NM//AB và NM=AB

b: Xét tứ giác ABMN có 

AB//NM

AB=NM

Do đó: ABMN là hình bình hành

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
15 tháng 11 2023

a: Xét tứ giác ABHD có

\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)

=>ABHD là hình chữ nhật

Hình chữ nhật ABHD có AB=AD

nên ABHD là hình vuông

=>AB=BH=HD=DA

mà \(AB=AD=\dfrac{DC}{2}\)

nên \(BH=DH=\dfrac{DC}{2}\)

DH=DC/2

=>H là trung điểm của DC

Xét ΔDBC có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔDBC cân tại B(2)

Xét ΔBDC có

BH là đường trung tuyến

\(BH=\dfrac{DC}{2}\)

Do đó: ΔBDC vuông tại B(1)

Từ (1) và (2) suy ra ΔBDC vuông cân tại B

b: AB=HD

HD=HC

Do đó: AB=HC

Xét tứ giác ABCH có

AB//CH

AB=CH

Do đó: ABCH là hình bình hành

=>AC cắt BH tại trung điểm của mỗi đường

mà M là trung điểm của BH

nên M là trung điểm của AC

c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)

\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)

Do đó: \(\widehat{ADI}=\widehat{ACD}\)

mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)

nên \(\widehat{BAC}=\widehat{ADI}\)

 

Sửa đề: DH vuông góc AC

1: Xét ΔHDC có

M,N lần lượt là trung điểm của HD,HC

nên MN là đường trung bình

=>MN//DC và MN=DC/2

=>MN//AB và MN=AB

=>ABNM là hình bình hành

2: NM//AB

=>NM vuông góc AD

Xét ΔAND có

DH,NM là các đường cao

DH cắt NM tại M

=>M là trực tâm

3: Xét ΔHDC có

E,N lần lượt là trung điểm của CD,CH

nên EN là đường trung bình

=>EN//HD và EN=HD/2

=>EN//HM và EN=HM

=>HMEN là hình bình hành

=>MN đi qua trung điểm của HE

29 tháng 1 2023

thanks b nha :))

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD