K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.

Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath

26 tháng 2 2016

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

15 tháng 7 2017

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

12 tháng 7 2016

Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)

Vậy ta có điều phải chứng minh.

12 tháng 7 2016

cảm ơn bạn nhiều

31 tháng 8 2016

(a^2 +b^2).(x^2 +y^2) > hoặc = (ax+by)^2 
dấu " = " xảy ra khi a/x = b/y 
Vì a/x =b/y => ay=bx 
(a^2 +b^2).( x^2 +y^2)= a^2.x^2 +a^2.y^2 +b^2.x^2 + b^2.y^2 
= a^2.x^2 + b^2.x^2 +b^2.x^2 +b^2.y^2 
= (ax)^2 +2.b^2.x^2 + (by)^2 
= (ax)^2 +2.ax.by + (by)^2 ( tách b^2.x^2= b.x.b.x = a.y.b.x= ax.by) 
= (ax+by)^2 
=> đpcm +5*hjhjhkj

1 tháng 7 2016

Cái này có 2 cách : biến dổi tương đương và áp dụng  bất đẳng thức Bu-ni-a

Biến đổi tương đương : \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

Chuyển vế phải qua vế trái rút gọn lại ta được : \(a^2y^2-2axby+b^2x^2=0\)

                                                                      =>\(\left(ay-bx\right)^2=0\)

                                                                     \(\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)

14 tháng 7 2016

Bạn ơi phải có điều kiện nữa thì mới làm được

14 tháng 7 2016

a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)