cho hai góc xOy và góc yOz kề bù.Gọi OM, OM" theo thứ tự là tia phân giác của góc xOy và góc yOz. Chứng tỏ ràng OM vuông góc với OM"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{MON}=\widehat{yOM}+\widehat{yON}=\dfrac{1}{2}\widehat{xOy}+\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot180=90\)
Vậy ...
Hình tự vẽ nha
Ta có:xoy+yoz=180(2 góc kề bù)
(=)xon+noz+zom+yom=180
(=)2*noz+2*zom=180
(=)2(noz+zom)=180
(=)noz+zom=90
=>dpcm
Bài làm :
Bạn tự vẽ hình nhé
Om là phân giác góc xOy
\(\Rightarrow\widehat{xOm}=\frac{\widehat{xOy}}{2}=\frac{120}{2}=60^o\left(1\right)\)
Góc yOz kề bù góc xOy
\(\Rightarrow\widehat{xOz}=\widehat{yOz}-\widehat{yOx}=180-120=60^o\)
On là phân giác góc yOz
\(\Rightarrow\widehat{xOn}=\frac{\widehat{xOz}}{2}=\frac{60}{2}=30^o\left(2\right)\)
Cộng (1) với (2)
\(\Rightarrow\widehat{xOm}+\widehat{xOn}=60+30\)
\(\Leftrightarrow\widehat{mOn}=90^o\)
\(\Rightarrow Om\perp On\)
=> Điều phải chứng minh
Vì Om là tia phân giác góc xOy
=> \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}=\frac{1}{2}.120^0\)\(=60^0\)
Vì góc xOy kề bù góc yOz nên góc yOz = 180 độ - 120 độ = 60 độ
Vì On là tia phân giác góc yOz
=> \(\widehat{yOn}=\widehat{nOz}=\frac{1}{2}.\widehat{yOz}=\frac{60^0}{2}=30^0\)
=> \(\widehat{mOy}+\widehat{yOn}=60^0+30^0=90^0\)
=> \(\widehat{mOn}=90^0\)
=> Om vuông góc với On
Bài này có thể viết thành dạng tổng quát được nhé bạn!
Om là tia phân giác góc xOy, On là tia phân giác yOz mà góc xOy và yOz kề bù
=> Om vuông On
ta có khái niệm : Tia phân giác của 2 góc kề bù tao thành 1 góc có tổng số đo la 90 độ
nên om vuông góc với on