K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

\(\Delta ABC\)có A = \(90^0\)và AH là đường cao

 Áp dụng hệ thức trong tam giác vuông

=>\(AB^2=BH.BC\Leftrightarrow BC=\frac{AB^2}{BH}=\frac{10^2}{5}=20\)

=>\(AC^2=CH.BC\Leftrightarrow AC=\sqrt{\left(BC-BH\right)BC}\)=\(\sqrt{\left(20-5\right)20}=10\sqrt{3}\)

=>\(BC.AH=AB.AC\Leftrightarrow AH=\frac{AB.AC}{BC}\)\(\Leftrightarrow\frac{10.10\sqrt{3}}{20}=5\sqrt{3}\)

\(TgB=\frac{AH}{BH}=\frac{5\sqrt{3}}{5}=\sqrt{3}\)

\(TgC=CotgB=\frac{BH}{AH}=\frac{5}{5\sqrt{3}}=\frac{1}{\sqrt{3}}\)=\(\frac{\sqrt{3}}{3}\)

=>\(\sqrt{3}=3.\frac{\sqrt{3}}{3}\)\(\Rightarrow TgB=3TgC\)

30 tháng 6 2016

Cảm ơn bạn nhìu nha!!!!!!!!!!!!!!!!!

7 tháng 1 2022

a.

Xét tam giác ABC vuông tại A, có:

AB^2 + AC^2 = BC^2 (Định Lý Pytago) => BC^2 = 25+144 = 169

=> BC = 13 (cm)

 

sinB = AC/BC = 12/13 => B = 67.4 (độ)

4 tháng 5 2023

Hình vẽ:

B A H C 5cm 12cm

Giải

a. Xét ΔHBA và ΔABC có:

\(\widehat{B}\)  chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ΔHBA ∼ ΔABC (g.g)

b. Xét ΔABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(định lí py-ta-go)

         \(=5^2+12^2\)

         \(=169\)

\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)

Vì ΔABC ∼ ΔHBA (cmt)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)

\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)

\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

1 tháng 5 2022

undefined

Áp dụng định lý pytago ta có :

`AC^2+AB^2=BC^2`

hay `16^2+12^2=BC^2`

`=>BC^2=400`

`=>BC=20(cm)`

1 tháng 5 2022

Tham khảo : 

undefined

undefined

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

caau b,c đâu em

8 tháng 3 2020

tự kẻ hình

a, xét tam giác ABC và tam giác HBA có : góc B chung

góc BAC = góc BHA = 90

=> tam giác ABC đồng dạng với tam giác HBA (g-g)

=>  AB/BH = AC/AH 

=> AB.AH = BH.AC 

b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)

BH = 3; AB = 5(gt)

=> 3^2 + AH^2 = 5^2

=> AH^2 = 16

=> AH = 4 do AH > 0

xét tam giác ABH có : BI là pg của góc ABH (gt)

=> AI/AB = IH/BH (tính chất)

=> AI+IH/AB+BH = AI/AB = IH/BH

=> AH/AB + BH = AI/AB = IH/BH 

có: AH = 4; AB = 5; BH = 3

=> 4/3+5 = AI/5 = IH/3

=> AI/5 = IH/3 = 1/2

=> AI = 5/2 và IH = 3/2

c,  góc CAH = 90 - góc HAB 

góc HBA = 90 - góc HAB 

=> góc CAH = góc HBA 

xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90

=> tam giác AHC đồng dạng với tam giác BHA (g-g)

=>  AC/AB = AH/HB

=> AC/AH = AB/HB 

BI là pg của tam giác AHB => AI/AH = AB/AB

CK là pg của tam giác AHC => CK/KH = AC/AH

=> AI/AH = CK/KH

=> KI // AC