K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x+ 2x+ 2x+ 2x + 1

= x- 2x

= xx x- x- x+ 1 = x(1- x) + ( 1 - x2 ) 

= ( 1 - x) x ( 1 - x2 ) 

= ( 1 - x2

  • SKT_Twisted Fate Âm Phủ
  • Sai rồi :
  • \(x^4-2x^2=?\)
  •  
29 tháng 7 2021

x4 - 2x3-2x2 -2x -3

=(x4+x3)-(3x3+3x2)+(x2+x)-(3x+3)

=x3(x+1)-3x2(x+1)+x(x+1)-3(x+1)

= (x3-3x2+x-3)(x+1)

= ((x3-3x2)+(x-3))(x+1)

= (x2(x-3)+(x-3))(x+1)

=(x2+1)(x-3)(x+1)

27 tháng 11 2017

x 4 - 2 x 3 - 2 x 2 - 2 x - 3 =   ( x 4   −   1 )   −   ( 2 x 3   +   2 x 2 )   −   ( 2 x   +   2 ) =   ( x 2   +   1   ) ( x 2   −   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x 2   +   1 ) ( x   −   1 ) ( x   +   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x   +   1 ) ( x 2   +   1 ) ( x   −   1 )   −   2 x 2   –   2 =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   1 )   −   2 ( x 2   +   1 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   –   1   −   2 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   3 )

21 tháng 8 2021

x^4 - 2x^3 - 2x^2 - 2x - 3 

= x^4 - 1 - 2x^3 - 2x^2 - 2x -2 

= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 ) 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ] 

= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 ) 

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Đa thức này không phân tích được thành nhân tử bạn nhé. 

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

2 tháng 8 2021

cái j thế bn

13 tháng 12 2021

\(x^4+4\)

\(\left(x^2+2\right)^2-4x^2\)

\(\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

22 tháng 12 2022

`x^4+x^2 y^2+y^4`

`=x^4+2x^2 y^2 +y^4-x^2 y^2`

`=(x^2+y^2)^2-(xy)^2`

`=(x^2-xy+y^2)(x^2+xy+y^2)`

10 tháng 8 2021

x42x3+2x1x4−2x3+2x−1

=x4x3x3+x2x2+x+x1=x4−x3−x3+x2−x2+x+x−1

=x3(x1)x2(x1)x(x1)+(x1)=x3(x−1)−x2(x−1)−x(x−1)+(x−1)

=(x1)(x3x2x+1)=(x−1)(x3−x2−x+1)
=(x1)[

10 tháng 8 2021

\(x^4+2x^3+2x^2+2x+1\\ =\left(x^4+x^3\right)+\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\\ =x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\\ =\left(x^3+x^2+x+1\right)\left(x+1\right)\\ =\left[\left(x^3+x^2\right)+\left(x+1\right)\right]\left(x+1\right)\\ =\left[x^2\left(x+1\right)+\left(x+1\right)\right]\left(x+1\right)\\ =\left(x^2+1\right)\left(x+1\right)^2\)