cho đt (O) bk AB=2R vẽ dây cung CD vuông góc với AB tại H .Gọi M là điểm chính giữa cung BC . I là giao điểm CB với OM , K là giao điểm AM với CB .chứng minh :
a, KC/KB = AC/AB
b, AM là phân giác góc CMD
c, Tứ giác OHCI nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OB=OC
MB=MC
=>OM là trung trực của BC
=>OM vuông góc BC tại I
góc CHO+góc CIO=180 độ
=>CHOI nội tiếp
a) Do M là điểm chính giữa của cung BC nên \(\widehat{OIC}=90^o\).
Mà \(\widehat{OHC}=90^o\) nên tứ giác HCIO nội tiếp đường tròn đường kính OC.
b) Do M là điểm chính giữa của cung BC nên hai cung MB, MC bằng nhau.
Từ đó \(\widehat{MAC}=\widehat{MAB}\) nên AM là tia phân giác của góc BAC.
Theo tính chất đường phân giác trong tam giác ta có \(\dfrac{KC}{KB}=\dfrac{AC}{AB}=sin30^o=\dfrac{1}{2}\Rightarrow KB=2KC\).
1. vì M là điểm nằm chính giữa cung AC⇒AH=HC
-->OM đi qua trung điểm H của dây cung AC
--->OM⊥AC hay ∠MHC=90
có ∠AMB=90 (góc nội tiếp) nên BM//CK
⇒∠AMB=∠MKC=90 có ∠MKC+∠MHC=90+90=180
⇒tứ giác CKMH nội tiếp
Do tứ giác BCEF nội tiếp nên ME . MF = MB . MC
Lại có tứ giác BCKA nội tiếp nên MC . MB = MK . MA
Suy ra MK . MA = ME . MF nên tứ giác AKEF nội tiếp.
Mà tứ giác AEHF nội tiếp nên 5 điểm A, E, F, H, K đồng viên.
Suy ra \(\widehat{HKA}=\widehat{HEA}=90^o\Rightarrow HK\perp AM\).