Hẹp me!!
Cho đa thức A=2x2+|7x-1|-(5-x-2x2
a/ Thu gọn đa thức A
b/Tìm x để A=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu 7x-1\(\ge0\Leftrightarrow x>\frac{1}{7}\)
=>|7x-1|=7x-1
Khi đó,ta có:
A=2x2+(7x-1)-(5-x+2x2)
=2x2+7x-1-5+x-2x2
=(2x2-2x2)+(7x+x)-(1+5)
=8x-6
Nếu 7x-1<0\(\Leftrightarrow x< \frac{1}{7}\)
thì |7x-1|=1-7x
Khi đó ,ta có:
A=2x2+(1-7x)-(5-x+2x2)
= 2x2+1-7x-5+x-2x2
=(2x2-2x2)+(-7x+x)+(1-5)
=-6x-4
b, Với \(x\ge\frac{1}{7}\), để A=2 thì
8x-6=2
=>8x=8
=>x=1(t/m)
Với x< 1/7, để A=2 thì
-6x-4=2
=>-6x=6
=>x=-1(t/m)
Vậy \(x=\pm1\)thì A=2
a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)
\(\Rightarrow P=x^2-x\)
Gỉa sử : x = 1 là nghiệm của đa thức
Thay x = 1 vào P ta được : \(1-1=0\)*đúng*
Vậy x = 1 là nghiệm của đa thức trên
b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1)
Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2)
TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)
TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)
`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`
`= x^2 - 8x + 23`
Hệ số cao nhất: `1`
Hệ số tự do: `23`
`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)
`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`
`= -x - 9`
Hệ số cao nhất: `-1`
Hệ số tự do: `-9`
`b)`
`N(x) - B(x) = A(x)`
`=> N(x) = A(x) + B(x)`
`=> N(x) = (x^2 - 8x + 23)+(-x-9)`
`= x^2 - 8x + 23 - x - 9`
`= x^2 - 9x + 14`
`A(x) - M(x) = B(x)`
`=> M(x) = A(x) - B(x)`
`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`
`= x^2 - 8x + 23 + x+9`
`= x^2 - 7x +32`
a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17
= 3x^2 + 6 - 12x - 2x^2 + 4x + 17
= x^2 - 2x + 23
b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)
= 3x^2 - 7x + 3 - 3x^2 + 6x - 12
= -x + -9
A(x) = x^2 - 2x + 23
B(x) = -x - 9
Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.
Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.
b)
N(x) - B(x) = A(x)
N(x) - (-x - 9) = x^2 - 2x + 23
N(x) + x + 9 = x^2 - 2x + 23
N(x) = x^2 - 3x + 14
Vậy, N(x) = x^2 - 3x + 14.
A(x) - M(x) = B(x)
x^2 - 2x + 23 - M(x) = -x - 9
x^2 - 2x + x + 9 + 23 = M(x)
x^2 - x + 32 = M(x)
Vậy, M(x) = x^2 - x + 32.
a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)
\(A=0+x^2+\left(-3x\right)+2\)
\(A=x^2-3x+2\)
Bậc của đa thức là: \(2\)
Hệ số cao nhất là: \(1\)
b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)
\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)
\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)
\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)
c) A(x) có nghiệm khi:
\(A\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Có cách này,bạn xem đúng không nhé,mình nghĩ áp dụng định nghĩa dấu giá trị tuyệt đối thôi mak: \(\hept{\begin{cases}\left|a\right|=a\Leftrightarrow a\ge0\\\left|a\right|=-a\Leftrightarrow a< 0\end{cases}}\)
a) \(A=\left(2x^2-2x^2\right)+\left|7x-1\right|-x-5=\left|7x-1\right|-x-5\)
Với \(x\ge\frac{1}{7}\Leftrightarrow7x-1\ge0\Rightarrow A=7x-1-x-5=6x-6\)
Với \(x\le\frac{1}{7}\Leftrightarrow7x-1\le0\Rightarrow A=1-7x-x-5=-8x-4\)
b) Từ câu a xét hai trường hợp:
Với \(x\ge\frac{1}{7}\Leftrightarrow A=6x-6=2\Leftrightarrow x=\frac{8}{6}\) (t/m)
Với \(x< \frac{1}{7}\Leftrightarrow A=-8x-4=2\Leftrightarrow x=-\frac{6}{8}\) (t/m)
Vậy....