Mn giúp mình bài này với ạ!
Cảm ơn nhiều ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AOBM có
góc OAM+góc OBM=180 độ
=>AOBM nội tiếp
b: \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{3}\)
nên \(\widehat{AOM}\simeq71^0\)
=>\(\widehat{AOB}\simeq142^0\)
=>sđ cung nhỏ AB là 142 độ; sđ cung lơn AB=360-142=218 độ
c:
Xét (O) có
ΔBAC nội tiếp
BC là đường kính
=>ΔBAC vuông tại A
=>BA vuông góc AC
Xét(O) có
MA,MB là tiêp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM//AC
góc ACB=góc OAC
góc OAC=góc AOM
=>góc ACB=góc AOM=góc BOM
d: góc DOM+góc BOM=90 độ
góc DMO+góc AOM=90 độ
mà góc BOM=góc AOM
nên góc DOM=góc DMO
=>DO=DM
1. However => Therefore
2. so => but
3. and => but
4. and => but
5. Because => Therefore
6. or => because
7. or => but
8. and => or
9. but => or
10. so => because
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
a: Δ=(m-2)^2-4(m-4)
=m^2-4m+4-4m+16
=m^2-8m+20
=m^2-8m+16+4
=(m-2)^2+4>=4>0
=>Phương trình luôn có 2 nghiệm pb
b: x1^2+x2^2
=(x1+x2)^2-2x1x2
=(m-2)^2-2(m-4)
=m^2-4m+4-2m+8
=m^2-6m+12
=(m-3)^2+3>=3
Dấu = xảy ra khi m=3
Kẻ đường cao AH
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=\dfrac{18}{5}\left(cm\right);AH=\dfrac{AB\cdot AC}{BC}=\dfrac{24}{5}\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)
Mà \(BD+DC=BC=10\Rightarrow\dfrac{7}{4}DC=10\Rightarrow DC=\dfrac{40}{7}\left(cm\right)\)
\(\Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow HD=BD-BH=\dfrac{30}{7}-\dfrac{18}{5}=\dfrac{24}{35}\)
Áp dụng PTG: \(AD=\sqrt{AH^2+HD^2}=\sqrt{\left(\dfrac{24}{35}\right)^2+\left(\dfrac{24}{5}\right)^2}=\dfrac{24\sqrt{2}}{7}\approx4,85\left(cm\right)\)
c)\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)....\left(1+\dfrac{1}{2020}\right)\left(1+\dfrac{1}{2021}\right)\)
\(=\left(\dfrac{1.2}{1.2}+\dfrac{1}{2}\right)\left(\dfrac{1.3}{1.3}+\dfrac{1}{3}\right)...\left(\dfrac{1.2021}{1.2021}+\dfrac{1}{2021}\right)\)
\(=\dfrac{3}{1.2}\cdot\dfrac{4}{1.3}\cdot\cdot\cdot\cdot\dfrac{2022}{1.2021}\)
\(=\dfrac{3.4.5...2022}{\left(1.1.1....1\right)\left(2.3.4...2021\right)}\)
\(=\)\(\dfrac{3.4.5...2022}{2.3.4...2021}\)
\(=\dfrac{2022}{2}=1011\)
\(d\))\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{199}\right)\left(1-\dfrac{1}{200}\right)\)
\(=\left(\dfrac{2}{1.2}-\dfrac{1}{1.2}\right)\left(\dfrac{3}{1.3}-\dfrac{1}{1.3}\right)....\left(\dfrac{200}{1.200}-\dfrac{1}{1.200}\right)\)
\(=\dfrac{1.2.3....199}{\left(1.1.1....1\right).\left(2.3.4....200\right)}\)
\(=\dfrac{1.2.3...199}{2.3.4...200}\)
Nếu mik làm sai mong bạn thông cảm
1. Turn on (please+Vo)
2. Turned / off (was chia qk)
3. Look for
4. Got up (because S+ had+V3/ed, S+V2/ed)
5. Ran into( hai hd lien tiep)
6. Goes on (after S+V2/ed, S+Vht)