C/m: 20^15-1 chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)
Câu a:
TH1 : $n = 3k$
thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$
TH2 : $n = 3k+1$
thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$
TH3 : $n = 3k+2$
thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$
Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$
-Nguyễn Thành Trương-
Câu 1b)
+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)
(2n+1) chia hết cho (n+3)
=> (2n+6) - 5 chia hết cho (n+3)
Mà 2n+6 chia hết cho (n+3)
nên 5 chia hết cho (n+3)
=> (n+3)={0;5;10;15,...}
=> n={-3;2;7;12;...}
Mà n thuộc N
=> n={2;7;12;....}
Mấy câu sau bạn làm tương tự nha.
CHÚC BẠN HOK TỐT !!!!!!!!!!
a) \(\left(2n+1\right)⋮\left(n-3\right)\)
\(\Leftrightarrow\left(2n-6\right)+7⋮\left(n-3\right)\)
\(\Leftrightarrow2\left(n-3\right)+7⋮\left(n-3\right)\)mà \(2\left(n-3\right)⋮\left(n-3\right)\)
\(\Leftrightarrow7⋮\left(n-3\right)\)
\(\Leftrightarrow\left(n-3\right)\inƯ\left(7\right)\)Mặt khác \(n\in N\) nên\(n-3\in N\)
\(\Leftrightarrow n-3=7\)
\(\Leftrightarrow n=10\)
b) \(\left(n+8\right)⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)+19⋮\left(n-11\right)\)mà \(\left(n-11\right)⋮\left(n-11\right)\)
\(\Leftrightarrow19⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)\inƯ\left(19\right)\)Mặt khác \(n\in N\)nên \(n-11\in N\)
\(\Leftrightarrow n-11=19\)
\(\Leftrightarrow n=30\)
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Viết 2015 - 1 = (205)3 - 1 = (205 - 1)(2010 + 205 +1).
Mà 205 -1 = 11*290909
Nên 2015 - 1 chia hết cho 11. đpcm