K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

C A B D E M N O I

Gọi O là giao điểm của CM và AD; I là giao điểm của CN và BE.

Do AD là tia phân giác góc A nên ta thấy ngay \(\Delta ACD=\Delta AMD\) (Cạnh huyền góc nhọn)

Vậy thì AC = AM; DC = DM hay AD là trung trực của CM. Vậy nên \(\widehat{COD}=90^o.\)

Từ đó ta có \(\widehat{OCD}+\widehat{CDO}=90^o\)  mà \(\widehat{CAD}+\widehat{CDO}=90^o\Rightarrow\widehat{OCD}=\widehat{CAD}=\frac{\widehat{CAB}}{2}\)

Hoàn toàn tương tự \(\widehat{ACN}=\frac{\widehat{ABC}}{2}\)

Ta có \(\widehat{ABC}+\widehat{BAC}=90^o\Rightarrow2\widehat{ACN}+2\widehat{BCM}=90^o\)

\(\Rightarrow\widehat{ACN}+\widehat{BCM}=45^o\Rightarrow\widehat{MCN}=90^o-45^o=45^o.\)

10 tháng 1 2017

45bạn ạ, hihi^_^,tk mÌNH nha

1 tháng 11 2018

Giải 

Bạn cân hình cho vuông góc nha! Mình không cân được.

N A B M C E D

Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .

Do đó :

\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay

\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)

Tương tự ta cũng có :

\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)

Từ (1) và (2) suy ra :

\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)

Xét 2 tam giác ABC và EAD,chúng có : 

\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)

Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)

b) Do 2 tam giác ABC và AED = nhau ta có :

\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)

Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .

=> CM = AN

Hai tam giác AMC = AND có :

AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)

Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)

27 tháng 5 2015

Bạn nhìn hình của cô nhé:

Xét \(\Delta BEN\)\(\Delta BEC\)Ta có:

          BE chung

          góc CEB= góc NBE(do be là phân giác góc B)

=>\(\Delta BEN=\Delta BEC\left(CH-GN\right)\)

=> BN=BC(c.t.ứ)

=>\(\Delta BCN\) cân ở B => góc CNB = góc NCB =\(\frac{180^0-gócABC}{2}\)

bằng cách chứng minh tương tự:

góc AMC=góc ACM = \(\frac{180^0-gócBAC}{2}\)

=> góc AMC + góc CNB =\(\frac{180^0-gócABC+180^0-gócBAC}{2}=\frac{360^0-90^0}{2}=135^0\)(do tam giác ABC vuông ở C)

Mà góc MCN+góc AMC + góc CNB=1800

=>góc MCN =350

27 tháng 5 2015

C B A D E M N 1 2 3

+) Vì AD là phân giác của góc A ; DM là khoảng cách từ D xuống cạnh AB; DC là khoảng cách từD xuống cạnh AC

=> DM = DC

=> tam giác DCM cân tại D 

=> góc C1\(\frac{180^o-CDM}{2}\)

Mà góc CDM là góc ngoài của tam giác DMB => góc CDM = DBM + BMD = DBM + 90o

=> Góc C1\(\frac{180^o-CDM}{2}=\frac{180^o-\left(DBM+90^o\right)}{2}=\frac{90^o-DBM}{2}\) (1)

+) Tương tự, BE là phân giác của góc B 

=> EC = EN => tam giác ACN cân tại E

=> Góc C3\(\frac{180^o-CEN}{2}\)

mà góc CEN = EAN + ANE = EAN + 90o

=> góc C3 = \(\frac{180^o-CEN}{2}=\frac{180^o-\left(EAN+90^o\right)}{2}=\frac{90^o-EAN}{2}\) (2)

+)  góc MCN = 90o - (C1 + C3). Từ (1)(2)

=> Góc MCN =  90o -  (\(\frac{90^o-DBM}{2}\) + \(\frac{90^o-EAN}{2}\) )

= 90o -  \(\frac{180^o-\left(DBM+EAN\right)}{2}\) =  90o -  \(\frac{180^o-90^o}{2}\) = 45o