tim so nguyen a de a^2 + a + 3 / a+1 la so nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Oái gặp bn trùng tên nè!
a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Rightarrow3⋮a+1\)
Vì \(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
Ta có bảng :
\(a+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(a\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(Đk\) \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm
b) Ta có :
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy-2y=0\)
\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)
\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)
Vì \(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)
Ta có bảng :
\(x\) | \(2x-1\) | \(1-2y\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(-1\) | \(1\) | \(0\) | TM |
\(1\) | \(1\) | \(-1\) | \(1\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(0,0\right);\left(1,1\right)\)
b) \(x-2xy+y=0\)
\(\Rightarrow x-\left(2xy-y\right)=0\)
\(\Rightarrow x-y\left(2x-1\right)=0\)
\(\Rightarrow2x-2y\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Ta có:
TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy...................
\(A=\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
Để A nguyên thì a+1 là U(3) = {-3;-1;1;3}
Vậy a có 4 giá trị nguyên là: -4;-2;0;2 để A nguyên.
\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\)là số nguyên thì \(\frac{3}{a+1}\)phải là số nguyên
\(\frac{3}{a+1}\)là số nguyên khi và chỉ khi 3 chia hết cho a+1
=>a+1\(\in\)Ư(3)
=>a+1\(\in\){-3;-1;1;3}
=>a\(\in\){-4;-2;0;2}