cho tam giác abc có a(-1,2) đường cao BH 3x+y-4=0 trung tuyến BI x-y=0 lập pt ab ac bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì pt đường thẳng $AC$ là $5x-y=0$ nên gọi tọa độ điểm $C$ là $(c,5c)$
PTĐT $AB$ là $2x-y=0$ nên gọi tọa độ điểm $B$ là $(b,2b)$
Trung điểm $D$ của $BC$ có tọa độ là:\(\left(\frac{b+c}{2}; \frac{2b+5c}{2}\right)\)
Vì $D$ thuộc đường thẳng \(3x-y=0\) nên \(\frac{3(b+c)}{2}=\frac{2b+5c}{2}\)
\(\Leftrightarrow b=2c\)
Vậy tọa độ điểm \(B(2c,4c); C(c,5c)\)
Gọi ptđt $BC$ là \(y=kx+m\)
Ta có: \(\left\{\begin{matrix} 4c=2ck+m(1)\\ 5c=ck+m(2)\\ 9=3k+m(3)\end{matrix}\right.\)
Từ \((1),(2)\Rightarrow c=-ck\Rightarrow k=-1\)
Thay vào (3) suy ra \(m=12\)
PTĐT là: \(y=-x+12\Leftrightarrow x+y-12=0\)
Chiều Xuân: Bạn ơi mình chưa hiểu đề bài câu 2 lắm. Tam giác $ABC$ vuông cân đỉnh $A$ thì góc vuông là góc $A$ đúng không? Nhưng khi đó thì không thể tồn tại đường cao $BH$ được. Bạn xem lại đề bài hộ mình với. Cảm giác điều kiện nó sai và hơi thừa
1.
A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)
Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)
Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)
Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Phương trình đường thẳng d qua C và vuông góc BN có dạng:
\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)
Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)
Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB
\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt
Phương trình AB:
\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)
A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)
1.
Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)
Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)
Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)
Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)
Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)
\(\Rightarrow C=\left(3;1\right)\)
Phương trình đường thẳng BC:
\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)
2.
1.
Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)
Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)
Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)
Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)
\(\Rightarrow C=\left(2;-1\right)\)
Phương trình đường thẳng BC:
\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)