so sanh 31111 va 17139
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
So sánh không quy đồng thì:
\(\frac{23}{48}< \frac{47}{92}\)
k nha
a) Ta thấy: 31111 < 34111 = (17.2)111 =17111.2111 (1)
17139 = 17111.1728 > 17111.1628 = 17111.(24)28 = 17111. 2112 > 17111. 2111 (2)
Từ (1) và (2) => 31111< 17139
b) Gọi số tự nhiên cần tìm là A
Gọi B và C lần lượt là thương hụt của các phép chia A : 5 và A : 7 (A; B; C ∈ N)
Ta có: A = 5 B + 3 => A x 14 = 70B + 42 (1)
A = 7C + 4 => A x 15 = 105 C + 60 (2)
Trừ theo các vế của (2) cho (1) ta được:
A = 105C - 70 B + 18 = 35. (3C - 2B) + 18
Dễ thấy STN A nhỏ nhất chỉ có thể là 18 (Khi 3C - 2B = 0)
Vậy A là 18
Thử lại 18 : 5 = 3 dư 3; 18 : 7 = 2 dư 4 (Đúng)
a) Ta có: \(31^{111}< 34^{111}=17^{111}\cdot2^{111}\)
\(17^{139}=17^{111}\cdot17^{28}>17^{111}\cdot16^{28}=17^{111}\cdot2^{112}>17^{111}\cdot2^{111}\)
Do đó: \(31^{111}< 17^{139}\)
câu a:(-7)*a lớn hơn hoặc bằng (-10)*a
câu b 15*(a-3) lớn hơn hoặc bằng 11*(a-3)
Ta có : 17139=17111.1728
mà 17111>3111=>17111.1728>3111
=>3111<17139
Ta có: 3111 < 3139< 17139
Vậy 3111 < 17139
Cách này là cách nhanh nhất: Chọn số trung gian