Tìm x biết:
a) 7.(x-1)+2x.(1-x)=0
b) \(\frac{13+x}{37-x}=\frac{7}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)
\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)
Vậy \(x=\dfrac{-255}{2}\)
\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+1\right)=4\)
\(\Leftrightarrow x^3-1-x^3-x=4\)
\(\Leftrightarrow-x=5\)
hay x=-5
c: Ta có: \(\left(2x-1\right)^3+\left(x+2\right)^3-9x\left(x+1\right)\left(x-1\right)=7\)
\(\Leftrightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8-9x^3+9x=7\)
\(\Leftrightarrow-6x^2+27x=0\)
\(\Leftrightarrow-3x\left(2x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{9}{2}\end{matrix}\right.\)
a) 0,4:x=x:0,9
0,4.0,9=x2
0,36 =x2
\(\sqrt{0,36}\)=x
0,6 =x
a, 0,4 : x = x : 0,9
<=> x2 = 0,4 . 0,9
<=> x2 = 0,36
<=> x = 0,6 hoặc -0,6
b, \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow\frac{40}{3}\div\frac{4}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow10=26\div\left(2x-1\right)\)
\(\Leftrightarrow2x-1=\frac{13}{5}\)
\(\Leftrightarrow2x=\frac{18}{5}\)
\(\Leftrightarrow x=\frac{9}{5}\)
c, \(0,2\div1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{5}\div\frac{6}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{6}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow6x+7=4\)
\(\Leftrightarrow6x=-3\)
\(\Leftrightarrow x=\frac{-1}{2}\)
d, \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow-10x=-220\)
\(\Leftrightarrow x=22\)
a) \(1\frac{2}{7} = 1 + \frac{2}{7} = \frac{9}{2}\)
\(\begin{array}{l}x:1\frac{2}{7} = - 3,5\\x:\frac{9}{7} = - \frac{7}{2}\\x = - \frac{7}{2}.\frac{9}{7}\\x = - \frac{9}{2}\end{array}\)
b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)
\(\begin{array}{l}\frac{2}{5}.x - \frac{1}{5}.x = \frac{3}{4}\\\left( {\frac{2}{5} - \frac{1}{5}} \right).x = \frac{3}{4}\\\frac{1}{5}.x = \frac{3}{4}\\x = \frac{3}{4}:\frac{1}{5}\\x = \frac{3}{4}.5\\x = \frac{{15}}{4}\end{array}\)
a) \(\Rightarrow\left(2x-3\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, ⇒ (2x - 3)2 = 49
⇒ (2x - 3)2 = \(\left(\pm7\right)^2\)
⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0
⇒ (x - 5).(2x + 7) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c, ⇒ x2 - 5x + 2x - 10 = 0
⇒ (x2 - 5x) + (2x - 10) = 0
⇒ x.(x - 5) +2.(x - 5) = 0
⇒ (x - 5).(x + 2)=0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)