K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Phương trình hoành độ giao điểm là:

\(x^2-ax-3=0\)

a=1; b=-a; c=-3

Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

b: Phương trình hoành độ giao điểm là:

\(x^2+\left(m-2\right)x-m^2-1=0\)

\(ac=-m^2-1< 0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

AH
Akai Haruma
Giáo viên
12 tháng 5 2023

Lời giải:

Với mọi $m\neq 0$ nhé bạn. Thay $m=0$ không thỏa mãn

PT hoành độ giao điểm của $(P)$ và $(d)$:

$mx^2-[(m+2)x+m-1]=0$

$\Leftrightarrow mx^2-(m+2)x+(1-m)=0(*)$

Với $m\neq 0$ thì $(*)$ là pt bậc $2$ ẩn $x$

$\Delta=(m+2)^2-4m(1-m)=5m^2+4>0$ với mọi $m\neq 0$ nên $(*)$ luôn có 2 nghiệm phân biệt 

Tức là $(P)$ và $(d)$ luôn cắt nhau tại 2 điểm phân biệt với mọi $m\neq 0$

 

NV
4 tháng 3 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-1\right)x+m^2+2m\Leftrightarrow x^2-2\left(m-1\right)x-m^2-2m=0\) (1)

\(\Delta'=\left(m-1\right)^2+m^2+2m=2m^2+1>0;\forall m\)

\(\Rightarrow\) (1) có 2 nghiệm pb với mọi m hay (P) luôn cắt (d) tại 2 điểm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2-2m\end{matrix}\right.\)

\(x_1^2+x_2^2+6x_1x_2>2016\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+4x_1x_2>2016\)

\(\Leftrightarrow\left(2m-2\right)^2+4\left(-m^2-2m\right)>2016\)

\(\Leftrightarrow-16m>2012\)

\(\Rightarrow m< -\dfrac{503}{4}\)

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

3 tháng 6 2017
  1. xét phương trình hoành độ giao điểm :  \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên  phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
  2. Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)

nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)

  • \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
  • \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
28 tháng 2 2019

2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )

a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?

b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.

Tìm m sao cho: OH2 + OK2 = 6     mọi người hướng dẫ mk ý b vs