Cho a,b,c là các số dương tùy ý, chứng minh rằng:
\(\left(a+b+c\right)^3\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le27a^2b^2c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a+b-c=x;b+c-a=y;a+c-b=z\)
BĐT <=> \(\left(x+y+z\right)^3xyz\le27.\left(\frac{x+z}{2}\right)^2\left(\frac{y+z}{2}\right)^2\left(\frac{x+y}{2}\right)^2\)
<=> \(64xyz\left(x+y+z\right)^3\le\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left[xy\left(x+y\right)+...+3xyz\right]\)
<=> \(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)\ge6xyz\)(luôn đúng )
vì \(VT\ge3\sqrt[3]{x^2y^2z^2.\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge6xyz\)
Khi đó BĐT (1)
<=> \(64.xyz\left(x+y+z\right)^3\le27\left[\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\right]^2\)
<=> \(3xyz\left(x+y+z\right)\le\left(xy+yz+xz\right)^2\)
<=> \(x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)(BĐT Cosi)
=> BĐT được Cm
Dấu bằng xảy ra khi a=b=c
Mình có cách khác
bđt đồng bật nên t chuẩn hóa \(a+b+c=1\)
Ta biến doi vế trái về: \(\left[\left(a+b\right)^2-c^2\right]\left[\left(b+c\right)^2-a^2\right]\left[\left(c+a\right)^2-b^2\right]\)
\(=\left[\left(1-c\right)^2-c^2\right]\left[\left(1-a\right)^2-a^2\right]\left[\left(1-b\right)^2-b^2\right]\)
Giờ ta cần chứng minh:\(\left[\left(1-c\right)^2-c^2\right]\left[\left(1-a\right)^2-a^2\right]\left[\left(1-b^2\right)-b^2\right]\le27a^2b^2c^2\)
Ta xét :\(0< a,b,c< \frac{1}{3}\)(*)
\(\Rightarrow a+b+c< 1\)
vì \(a+b+c=1\)nên (*) vô lý
Ta xét:\(\frac{1}{3}\le a,b,c< 1\)
Đến đây ta thấy giữa các biến có sự riêng biệt nên ta xét:
\(3a^2-\left[\left(1-a\right)^2-a^2\right]=\left(3a-1\right)\left(a+1\right)\ge0\)
\(\Rightarrow3a^2\ge\left(1-a\right)^2-a^2\)
Tương tự:\(3b^2\ge\left(1-b\right)^2-b^2\)
\(3c^2\ge\left(1-c\right)^2-c^2\)
nhan các vế bđt lại với nhau ta có điều phải chứng minh
Đến đây ta có thể suy ra điều phải chứng minh
vài lời nhắn:
Mình không chắt về cách xét của mình nữa
\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)
\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)
Ta có:
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
Áp dụng bất đẳng thức Bunyakovsky ta được: \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)
Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)
Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)
Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)
Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra a = b = c = 1
Xét: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\ge0\) nên ta có thể chứng minh được:
\(\left(a+b-c\right)\ge0;\left(b+c-a\right)\ge0;\left(c+a-b\right)\ge0\)
Đặt: \(x=a+b-c;y=b+c-a;z=c+a-b\)
\(\Rightarrow a=\frac{x+z}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
\(\Rightarrow64xyz\left(x+y+z\right)^3\le27\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\)
Ta có:
\(3xyz\left(x+y+z\right)\le\left(xy+yz+zx\right)^2\)
\(\Rightarrow64\cdot3xyz\left(x+y+z\right)^3\le64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\)
Vậy ta cần chứng minh:
\(64\left(x+y+z\right)^2\left(xy+yz+zx\right)^2\le3\cdot27\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Lấy căn bậc 2 của 2 vế ta được:
\(9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)
Đến đây bài toán được chứng minh.