Bài 2. Cho ΔABC cân tại A. Phân giác AM (M ∈ BC), Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K∈ AB).
a) Chứng minh rằng D AMB = D AMC. b) Chứng minh rằng BH = CK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác AMC có: AM chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAM = góc CAM do AM là pg của góc BAC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
b, xét tam giác BKC và tam giác CHB có :BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BKC = góc CHB = 90
=> tam giác BKC = tam giác CHB (ch-gn)
=> BH = CK (đn)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
b: Xét ΔKCB vuông tại K và ΔHBC vuông tại H có
BC chung
KB=HC
Do đó: ΔKCB=ΔHBC
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔBIC cân tại I
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
d: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a) Xét △AMB và △AMC có :
AB = AC (gt)
^ABC = ^ACB (gt)
^BAM = ^CAM (gt)
\(\Rightarrow\)△AMB = △AMC (g.c.g)
b) Xét △ABH và △ACK có :
^KAH chung
AB = AC (gt)
\(\Rightarrow\)△ABH - △ACK (cạnh huyền-góc nhọn)
\(\Rightarrow\)BH = CK (Cặp cạnh tương ứng)
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
a)xét 2 tam giác vuông AHB và AKC có:
\(\widehat{A}\) là góc chung
AB=AC (ΔABC cân tại A)
⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)
⇒BH=CK (2 cạnh tương ứng)
b) xét 2 tam giác vuông AHI và AKI có:
AH=AK (ΔAHB=ΔAKC)
AI là cạnh chung
⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)
⇒\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)
⇒AI là tia phân giác của\(\widehat{HAK}\)
a) Sửa đề: AH = AK
Xét t/giác ABH và t/giác ACE
có: AB = AC (gt)
\(\widehat{AHB}=\widehat{AKC}=90^0\)(gt)
\(\widehat{A}\) : chung
=> t/giác ABH = t/giác ACK (Ch - gn)
=> AH = AK (2 cạnh t/ứng)
b) Ta có: \(\widehat{ABI}+\widehat{IBC}=180^0\)(kề bù)
\(\widehat{ACI}+\widehat{ICB}=180^0\)(kề bù)
Mà \(\widehat{ABI}=\widehat{ACI}\)(vì t/giác ABH = t/giác ACK)
=> \(\widehat{IBC}=\widehat{ICB}\) t/giác BIC cân tại I => IB = IC
Xét t/giác ABI và t/giác ACI
có: AB = AC (gt)
BI = IC (gt)
AI : chung
=> t/giác ABI = t/giác ACI (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\)(2 góc t/ứng)
=> AI là tia p/giác cảu góc A
b) Gọi O là giao giểm của AI và BC
Xét t/giác ABO và t/giác ACO
có: AB = AC (gt)
AO: chung
\(\widehat{BAO}=\widehat{OAC}\)(cmt)
=> t/giác ABO = t/giác ACO (c.g.c)
=> \(\widehat{AOB}=\widehat{AOC}\)(2 góc t/ứng)
Mà \(\widehat{AOB}+\widehat{AOC}=180^0\)(kề bù)
=> \(\widehat{AOB}=\widehat{AOC}=90^0\)
=> AO \(\perp\)BC hay AO \(\perp\)BC
d) Ta cos: t/giác ABO = t/giác ACO (cmt)
=> BO = OC (2 cạnh t/ứng)
=> O là trung điểm của BC
DO A; I; O thẳng hàng => AI đi qua trung điểm của BC
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔABH và ΔACK có
\(\widehat{BAH}\) chung
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
a, xét tam giác AMB và tam giác AMC có: AM chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAM = góc CAM do AM là pg của góc BAC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
b, xét tam giác BKC và tam giác CHB có :BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BKC = góc CHB = 90
=> tam giác BKC = tam giác CHB (ch-gn)
=> BH = CK (đn)