(Kiên Giang)
Cho phương trình bậc hai x2 + 2(m+3)x + m2 + 6m = 0 (1) với x là ẩn số
- Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.
- Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm x1; x2 thoả mãn đẳng thức (2x1 +1)(2x2 + 1) = 13
a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb
b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3) ; x\(_1\)x\(_2\)=m\(^2\)+6m (I)
Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13 (*)
Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6
Đáp số: �=1;�=−6m=1;m=−6