cho tam giác ABC cân tại A có góc A 120 độ. các tia phân giác góc trong là AM,BN,CK. tính góc KMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA
a: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-72^0}{2}=54^0\)
nên \(\widehat{AKC}=126^0\)
c: Vì Am và AK là hai tia phân giác của hai góc kề bù
nên Am⊥AK
Vì Cn và CK là hai tia phân giác của hai góc kề bù
nên Cn⊥CK
e: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-x}{2}\)
\(\Leftrightarrow\widehat{AKC}=\dfrac{360^0-180^0+x}{2}=\dfrac{180^0+x}{2}\)
b) Ta có: G là trọng tâm của ΔBAC(gt)
mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)
\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)
Ta có: ΔABC cân tại A(cmt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=6^2+8^2=100\)
hay AB=10(cm)
Vậy: AM=6cm; AB=10cm
a) Xét ΔABC có:
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
AM là đường phân giác ứng với cạnh BC(Gt)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
http://d.violet.vn//uploads/resources/285/2783442/preview.swf
trang 73
Ta có : Góc BAM = góc CAM = 60 độ (1) ( AM là tia phân giác của góc A )
Dựng tia Ax là tia đối của tia AB. => góc CAx = 180 - góc A = 60 độ (2)
Từ (1) và (2) => AC là đường phân giác ngoài tại đỉnh A của tam giác BAM.
do đường phân giác ngoài tại đỉnh A và tia phân giác trong tại đỉnh B của tam giác BAM cắt nhau tại N => MN là đường phân giác ngoài tại đỉnh M của tam giác BAM ( t/c hai đường phân giác của hai góc ngoài của tam giác và tia phân giác của góc trong không kề với chúng cắt nhau tại một điểm ) MN là phân giác của góc AMC
Chứng minh tương tự ta được KM là đường phân giác ngoài tại đỉnh M của tam giác CAM . MN là phân giác góc AMB.
ta có góc KMN là góc tạo bởi hai tia phân giác của 2 góc kề bù nên có số đo bằng 90 độ ( t/c này học ở lớp 6 )
nếu ko nhớ thì bạn có thể làm như sau :
góc KMN = góc KMA + AMN = ( BMA + AMC ) : 2 = 180 : 2 = 90 độ
bạn cho mình hỏi "t/c hai đường phân giác của hai của tam giác và tia phân giác trong không kề với chúng cắt nhau tại một điểm" là như nào vậy?