Cho 3 số thực dương a b c thỏa mãn a+b+c =6 . chứng minh rằng (1+1\a³)(1+1\b³)(1+1\c³)>= 729\512
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)
\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)
Ta có:
\(\dfrac{1}{a+3b}+\dfrac{1}{c+3}\ge\dfrac{4}{a+3b+c+3}=\dfrac{4}{2b+6}=\dfrac{2}{b+3}\)
Tương tự:
\(\dfrac{1}{b+3c}+\dfrac{1}{a+3}\ge\dfrac{2}{c+3}\)
\(\dfrac{1}{c+3a}+\dfrac{1}{b+3}\ge\dfrac{2}{a+3}\)
Cộng vế:
\(\sum\dfrac{1}{a+3b}+\sum\dfrac{1}{a+3}\ge\sum\dfrac{2}{a+3}\)
\(\Rightarrow\sum\dfrac{1}{a+3b}\ge\sum\dfrac{1}{a+3}\) (đpcm)
bài này cô si đc ko nhỉ
Đặt \(A=\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\)
Ta có:
\(A=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\right)+\frac{1}{a^3b^3c^3}\)
Áp dụng BĐT Côsi, ta có:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{abc}\)
\(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\ge\frac{3}{a^2b^2c^2}\)
Thay vào A, ta được \(A\ge1+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\)
Lại áp dụng BĐT Côsi ta có:
\(abc\le\left(\frac{a+b+c}{3}\right)^3=\left(\frac{6}{3}\right)^3=8\)hay\(\frac{1}{abc}\ge\frac{1}{8}\)
Suy ra:\(A\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)
Đẳng thức xảy ra khi và chỉ khi:\(\hept{\begin{cases}a+b+c=6\\a=b=c\end{cases}\Leftrightarrow}a=b=c=2\)