Phân tích đa thức thành nhân tử
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi : \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\) theo công thức tổng của hai lập pương , ta được :
\(\left(y^2+z^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]\)
Thay vào \(A\),ta có : \(A=\left(y^2+z^2\right).B\).Trong đó :
\(B=\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)\right]+\left[\left(z^2-x^2\right)^2-\left(y^2+z^2\right)^2\right]\)
\(=\left[\left(x^2+y^2\right)\left(2x^2+y^2-z^2\right)\right]+\left[\left(2z^2-x^2+y^2\right)\left(-x^2-y^2\right)\right]\)
\(=\left(x^2+y^2\right)\left(3x^2-3z^2\right)\)
Vậy \(A=3\left(y^2+z^2\right)\left(x^2+y^2\right)\left(x^2-z^2\right)\).
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)
\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)
\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)
\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)
\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)
\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)
\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)
= 3(y2+z2)(x4+x2y2-x2z2-y2z2)
= 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]
= 3(y2+z2)(x2-z2)(x2+y2)
= 3(y2+z2)(x-z)(x+z)(x2+y2)
b) \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)
= (x+y)[3xy+3xz+3yz+3z2 ]
= 3(x+y)(xy+xz+yz+z2)
= 3(x+y)[x(y+z)+z(y+z)]
= 3(x+y)(x+z)(y+z)
a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)
\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)
\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)
b) \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)
\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)
\(=3x^2y+3xy^2\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)
\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)
P/s: Ko chắc
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé