K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Ta có: góc ABC = góc BAC + góc ACB (Tam giác abc vuông tại a)

=>      BC          = AB + AC (Quan hệ giữa góc và cạnh đối diện)

=>      BC + AH > AB + AC

Hay    AB + AC < BC + AH                

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm

5 tháng 4 2021

a) Xét tam giác ABC và tam giác HAC có:

BAC = AHC =90 

ABC = HAC (cùng phụ với HAB) 

=> ABC đồng dạng HAC (g.g)

b) Vì ABC đồng dạng HAC

=> AB/BC = AH/AC

=> AB.AC=BC.AH

c) Vì AB.AC = BC.AH

=> AB^2.AC^2= BC^2 . AH^2

Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)

=> AB^2.AC^2= (AB^2+AC)^2.AH^2

=> 1/AH^2 =1/AB^2 +1/AC^2

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: ΔBAC đồng dạng vơi ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

a: Xet ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH vuông góc BC

nên BA^2=BH*BC

\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE

Xét ΔCEB có KH//EB

nên KH/EB=CK/CE=KD/AE
mà AE=EB

nên KH=KD

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB