Tìm giá trị của x để bieerut hức sau đạt giá trị lớn nhất
A(x)=\(\frac{x}{\left(x+1999\right)^2}\) với x>0
Tìm giá trị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}max\)
<=> (x + 1999)2 min
Mà (x + 1999)2 > 0 nên (x + 1999)2 min = 0 <=> x = -1999
Vậy GTLN của A(x) là 0 <=> x = -1999
Cách trình bày của ĐTV sai trầm trọng, lp 8 ko thể trình bày như thế
Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất .
I x - 2017 I có giá trị nhỏ nhất khi x = 2017
Khi đó I x - 2017 I + 2 = 2
A = 4032 / 2 = 2016
Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017
GTLN A = 2016
Ta có : |x-2013| ≥ 0 với mọi x
=> |x-2013|+2≥ 2
=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)
=> Max A =1008
<=> x-2013=0
<=> x=2013
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất
Đặt \(C=\left|x-2013\right|+7\)
Ta có:\(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+7\ge7\)
\(\Rightarrow MinC=7\) khi x=2013
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
Biến đổi A(x):
\(A\left(x\right)=\frac{x+1999-1999}{\left(x+1999\right)^2}=\frac{x+1999}{\left(x+1999\right)^2}-\frac{1999}{\left(x+1999\right)^2}=\frac{1}{x+1999}-\frac{1999}{\left(x+1999\right)^2}\)
\(=\frac{1}{x+1999}-1999.\frac{1}{\left(x+1999\right)^2}=\frac{1}{x+1999}-1999.\left(\frac{1}{x+1999}\right)^2\)
Đặt \(\frac{1}{x+1999}=t\left(1\right)\)
PT \(\Leftrightarrow t-1999t^2=-1999t^2+t=-\left(1999t^2-t\right)=-\left[1999.\left(t^2-\frac{1}{1999}.t\right)\right]\)
\(=-\left[1999.\left(t^2-2.t.\frac{1}{3998}+\left(\frac{1}{3998}\right)^2-\left(\frac{1}{3998}\right)^2\right)\right]=....\) (tự biến đổi)
\(=-1999\left(t-\frac{1}{3998}\right)^2+\frac{1}{7996}=\frac{1}{7996}-1999\left(t-\frac{1}{3998}\right)^2\le\frac{1}{7996}\)
=>GTLN của \(t-1999t^2=\frac{1}{7996}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{3998}\)
Thay t vào (1) ta đc: \(\frac{1}{x+1999}=\frac{1}{3998}\Rightarrow x=1999\)
Vậy..................